9512.net
甜梦文库
当前位置:首页 >> 数学 >>

高中数学立体几何总复习可打印



第八章-立体几何
考试内容
平面及其基本性质.平面图形直观图的画法. 平行直线. 对应边分别平行的角. 异面直线所成的角. 异面直线的公垂线. 异面直线的距离. 直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平 面上的射影.直线和平面所成的角.三垂线定理及其逆定理. 平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个

平面垂直的判定与性 质. 多面体.正多面体.棱柱.棱锥.球.

考试要求
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空 间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系. (2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概 念,对于异面直线的距离,只要求会计算已给出公垂线时的距离. (3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质 定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂 线定理及其逆定理. (4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行 平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理. (5)会用反证法证明简单的问题. (6)了解多面体、凸多面体的概念,了解正多面体的概念. (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图. (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图. (9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式. 9(B) .直线、平面、简单几何体 考试内容: 平面及其基本性质.平面图形直观图的画法. 平行直线. 直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理. 两个平面的位置关系. 空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积. 直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离. 直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平 面内的射影. 平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性 质. 多面体.正多面体.棱柱.棱锥.球. 考试要求: (1)掌握平面的基本性质。会用斜二测的画法画水平放置的平面图形的直观图:能够画出 空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系. (2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念.掌握直线和 平面垂直的判定定理;掌握三垂线定理及其逆定理. (3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.
用爱与责任成就每一个孩子 1

(4)了解空间向量的基本定理;理解空间向量坐标的概念.掌握空间向量的坐标运算. (5) 掌握空间向量的数量积的定义及其性质: 掌握用直角坐标计算空间向量数量积的公式; 掌握空间两点间距离公式. (6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念. (7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距 离, 只要求会计算已给出公垂线或在坐标表示下的距离掌握直线和平面垂直的性质定理掌握 两个平面平行、垂直的判定定理和性质定理. (8)了解多面体、凸多面体的概念。了解正多面体的概念. (9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图. (10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图. (11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式. (考生可在 9(A)和 9(B)中任选其一)

立体几何 知识要点
一、 平面. 1. 经过不在同一条直线上的三点确定一个面. 注:两两相交且不过同一点的四条直线必在同一平面内. 2. 两个平面可将平面分成 3 或 4 部分.(①两个平面平行,②两个平面相交) 3. 过三条互相平行的直线可以确定 1 或 3 个平面.(①三条直线在一个平面内平行,②三条 直线不在一个平面内平行) [注]:三条直线可以确定三个平面,三条直线的公共点有 0 或 1 个. 4. 三个平面最多可把空间分成 8 部分.(X、Y、Z 三个方向) 二、 空间直线. 1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直 线—共面没有公共点;异面直线—不同在任一平面内 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×) (可能两条直线平行, 也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交 ③若直线 a、b 异面,a 平行于平面 ? ,b 与 ? 的关系是相交、平行、在平面 ? 内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线. ×) ( (射影不一定只有直线, 也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×) (并非是从平面外一点向这个平面所引 .. 的垂线段和斜线段) ⑦ a, b 是夹在两平行平面间的线段,若 a ? b ,则 a, b 的位置关系为相交或平行或异面. 2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异 面直线.(不在任何一个平面内的两条直线) 3. 平行公理:平行于同一条直线的两条直线互相平行. 4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角 相等(如下图). (二面角的取值范围? ? ?0? ,180? ?) (直线与直线所成角? ? ?0? ,90? ?) 1 1 2 (斜线与平面成角? ? ?0? ,90? ? ) (直线与平面所成角? ? ?0? ,90? ?) 2
方向相同 方向不相同

用爱与责任成就每一个孩子

2

(向量与向量所成角 ? ? [0 ? ,180? ]) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角) 相等. 5. 两异面直线的距离:公垂线的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. l1 , l 2 是异面直线,则过 l1 , l 2 外一点 P,过点 P 且与 l1 , l 2 都平行平面有一个或没有,但与 l1 , l 2 距离相等的点在同一平面内. ( L 1 或 L 2 在这个做出的平面内不能叫 L 1 与 L 2 平行的平面) 三、 直线与平面平行、直线与平面垂直. 1. 空间直线与平面位置分三种:相交、平行、在平面内. 2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条 直线和这个平面平行.( “线线平行,线面平行” ) [注]:①直线 a 与平面 ? 内一条直线平行,则 a ∥ ? . (×) (平面外一条直线) ②直线 a 与平面 ? 内一条直线相交,则 a 与平面 ? 相交. (×) (平面外一条直线) ③若直线 a 与平面 ? 平行,则 ? 内必存在无数条直线与 a 平行. (√) (不是任意一条直线, 可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) (可能在此平 面内) ⑤平行于同一直线的两个平面平行.(×) (两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×) (两直线可能相交或者异面) ⑦直线 l 与平面 ? 、 ? 所成角相等,则 ? ∥ ? .(×) ? 、 ? 可能相交) ( 3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个 平面相交,那么这条直线和交线平行.( “线面平行,线线平行” ) 4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平 P 面垂直,过一点有且只有一个平面和一条直线垂直. ? 若 PA ⊥ ? , a ⊥ AO ,得 a ⊥ PO (三垂线定理) , a O A 得不出 ? ⊥ PO . 因为 a ⊥ PO ,但 PO 不垂直 OA. ? 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一: 如果一条直线和一个平面内的两条相交直线都垂直, 那么这 两条直线垂直于这个平面.( “线线垂直,线面垂直” ) 直线与平面垂直的判定定理二: 如果平行线中一条直线垂直于一个平面, 那么另一条也垂直 于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面的两个平面平行.(×) (可能相交,垂直于同一条直线的两个平面 .... ..... 平行) ②垂直于同一直线的两个平面平行.(√) (一条直线垂直于平行的一个平面,必垂直于另一 个平面) ③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影 .. 相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线 段射影较长;③垂线段比任何一条斜线段短. [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] ⑵射影定理推论: 如果一个角所在平面外一点到角的两边的距离相等, 那么这点在平面内的
用爱与责任成就每一个孩子 3

射影在这个角的平分线上 四、 平面平行与平面垂直. 1. 空间两个平面的位置关系:相交、平行. 2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个 平面平行.( “线面平行,面面平行” ) 推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面. 3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平 行.( “面面平行,线线平行” ) 4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直. 两个平面垂直性质判定二: 如果一个平面与一条直线垂直, 那么经过这条直线的平面垂直于 这个平面.( “线面垂直,面面垂直” ) 注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系. 5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线 P 也垂直于另一个平面. ? 推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. ? B M A 证明:如图,找 O 作 OA、OB 分别垂直于 l 1 ,l 2 , O 因为 PM ? ? , OA ? ? , PM ? ? , OB ? ? 则 PM ? OA, PM ? OB . θ 6. 两异面直线任意两点间的距离公式: l ? m 2 ? n 2 ? d 2 ? 2mncos? ( ? 为锐角取加, ? 为
? ?? 钝取减,综上,都取加则必有 ? ? ? 0, ? ) 2 ? ? 7. ⑴最小角定理: cos? ? cos? 1 cos? 2 ( ? 1 为最小角,如图)

θ

θ1 θ2
图2

图1 ⑵最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有 4 条. 成角比交线夹角一半大,又比交线夹角补角小,一定有 2 条. 成角比交线夹角一半大,又与交线夹角相等,一定有 3 条或者 2 条. 成角比交线夹角一半小,又与交线夹角一半小,一定有 1 条或者没有. 五、 棱锥、棱柱. 1. 棱柱. ⑴①直棱柱侧面积: S ? Ch ( C 为底面周长, h 是高)该公式是利用直棱柱的侧面展开图为 矩形得出的. ②斜棱住侧面积: S ? C1l ( C1 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜

棱柱的侧面展开图为平行四边形得出的. ⑵{四棱柱} ? {平行六面体} ? {直平行六面体} ? {长方体} ? {正四棱柱} ? {正方体}. {直四棱柱} ? {平行六面体}={直平行六面体}.
四棱柱 底面是 侧棱垂直 底面是 平行六面体 直平行六面体 底面 矩形 平行四边形 长方体 底面是 正方形 正四棱柱 侧面与 正方体 底面边长相等

⑶棱柱具有的性质: ①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱 ........ 柱的各个侧面都是全等的矩形. ..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形. ..
用爱与责任成就每一个孩子 4

③过棱柱不相邻的两条侧棱的截面都是平行四边形. 注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直. ⑷平行六面体: 定理一:平行六面体的对角线交于一点,并且在交点处互相平分. ............. [注]:四棱柱的对角线不一定相交于一点. 定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. 推 论 一 : 长 方 体 一 条 对 角 线 与 同 一 个 顶 点 的 三 条 棱 所 成 的 角 为 ?, ? ,? , 则
c o 2 ? ? c o 2 ? ? c o 2 ? ?1. s s s

推 论 二 : 长 方 体 一 条 对 角 线 与 同 一 个 顶 点 的 三 各 侧 面 所 成 的 角 为 ?, ? ,? , 则
c o 2 ? ?c o 2 ? ?c o 2 ? ? 2. s s s

[注]:①有两个侧面是矩形的棱柱是直棱柱.(×) (斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×) (应是各侧面都是正方形的直棱柱才行) . ③对角面都是全等的矩形的直四棱柱一定是长方体.(×) (只能推出对角线相等,推不出底 面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边 可能相交,可能不相交,若两条边相交,则应是充要条件) 2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形. ②一个棱柱可以分成等体积的三个三棱锥;所以 V 棱柱 ? Sh

? 3V棱柱 .

⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等 iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等) ;底 面为正多边形. ②正棱锥的侧面积: S ?

1 Ch ' (底面周长为 C ,斜高为 h ' ) 2
? S底 cos?
(侧面与底面成的二面角为 ? )

③棱锥的侧面积与底面积的射影公式: S 侧 附:
a l b

c

以知 c ⊥ l , cos ? ? a ? b , ? 为二面角 a ? l ? b . 则 S1 ?

1 1 a ? l ①, S 2 ? l ? b ②,cos ? ? a ? b ③ ? ①②③ 2 2

得 S侧 ?

S底 cos?
.

注:S 为任意多边形的面积(可分别多个三角形的方法).
用爱与责任成就每一个孩子 5

⑵棱锥具有的性质: ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫 做正棱锥的斜高). ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱 在底面内的射影也组成一个直角三角形. ⑶特殊棱锥的顶点在底面的射影位置: ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心. ⑦每个四面体都有外接球, 球心 0 是各条棱的中垂面的交点, 此点到各顶点的距离等于球半 径; ⑧每个四面体都有内切球,球心 I 是四面体各个二面角的平分面的交点,到各面的距离等于 半径. [注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×) (各个侧面的 A 等腰三角形不知是否全等) b a ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.
c

简证:AB⊥CD,AC⊥BD ? BC⊥AD. 令 AB ? a, AD ? c, AC ? b

B

C

D F

得 BC ? AC ? AB ? b ? a, AD ? c ? BC ? AD ? bc ? ac ,已知 a ? c ? b ? 0, b ? a ? c ? 0
A

? ?

? ?

D

E

O' H B G

C

? ac ? bc ? 0 则 BC ? AD ? 0 .

iii. 空间四边形 OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取 AC 中点 O' ,则 oo ? ? AC, BO ? ? AC ? AC ? 平面 OO ?B ? AC ? BO ? ?FGH ? 90° 易知 EFGH 为平行四边形 ? EFGH 为长方形.若对角线等,则 EF ? FG ? EFGH 为正方形. 3. 球:⑴球的截面是一个圆面. ①球的表面积公式: S ? 4?R 2 . 4 ②球的体积公式: V ? ?R 3 . 3

O

r

⑵纬度、经度: ①纬度:地球上一点 P 的纬度是指经过 P 点的球半径与赤道面所成的角的度数. ②经度: 地球上 A, B 两点的经度差, 是指分别经过这两点的经线与地轴所确定的二个半平面 的二面角的度数,特别地,当经过点 A 的经线是本初子午线时,这个二面角的度数就是 B 点 的经度. 附:①圆柱体积: V ? ?r 2 h ( r 为半径, h 为高) 1 ②圆锥体积: V ? ?r 2 h ( r 为半径, h 为高) 3
1 ③锥形体积: V ? Sh ( S 为底面积, h 为高) 3
用爱与责任成就每一个孩子

R

O

6

4. ①内切球:当四面体为正四面体时,设边长为 a, h ? 得

6 3 2 3 2 a , S 底? a , S 侧? a 3 4 4

3 2 6 3 2 1 3 2 2 4 2 6 a ? a? a ?R ? ? a ?R ? R ? a/ 3? a? 3 ? a. 4 3 4 3 4 4 3 4 4

注:球内切于四面体: V B? ACD ?

1 1 ?S侧 ?R ? 3 ? S底 ?R ?S底 ?h 3 3

②外接球:球外接于正四面体,可如图建立关系式. 六. 空间向量. 1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重 合. 注:①若 a 与 b 共线, b 与 c 共线,则 a 与 c 共线.(×) [当 b ? 0 时,不成立] ②向量 a, b, c 共面即它们所在直线共面.(×) [可能异面] ③若 a ∥ b ,则存在小任一实数 ? ,使 a ? ?b .(×)[与 b ? 0 不成立] ④若 a 为非零向量,则 0 ? a ? 0 .(√)[这里用到 ?b(b ? 0) 之积仍为向量] (2)共线向量定理:对空间任意两个向量 a,b(b ? 0) , a ∥ b 的充要条件是存在实数 ? (具 有唯一性) ,使 a ? ?b . (3) 共面向量: 若向量 a 使之平行于平面 ? 或 a 在 ? 内, a 与 ? 的关系是平行, 则 记作 a ∥ ? . (4)①共面向量定理:如果两个向量 a, b 不共线,则向量 P 与向量 a, b 共面的充要条件是存 在实数对 x、y 使 P ? xa ? yb . ②空间任一点 O 和不共线三点 A、B、C,则 OP ? xOA? yOB ? zOC( x ? y ? z ? 1) 是 PABC 四 ... . ...... ..... 点共面的充要条件.(简证: OP ? (1 ? y ? z)OA? yOB ? zOC ? AP ? y AB ? z AC ? P、A、B、C 四点共面) 注:① 是证明四点共面的常用方法. ② 2. 空间向量基本定理:如果三个向量 a, b, c 不共面,那么对空间任一向量 P ,存在一个唯一 .... ... 的有序实数组 x、y、z,使 p ? xa ? yb ? zc . 推论:设 O、A、B、C 是不共面的四点,则对空间任一点 P, 都存在唯一的有序实数组 x、
A

y、z 使 OP ? xOA? yOB ? zOC (这里隐含 x+y+z≠1).
D

注:设四面体 ABCD 的三条棱, AB ? b, AC ? c, AD ? d , 其
用爱与责任成就每一个孩子

B M

G C

7

1 中 Q 是△BCD 的重心,则向量 AQ ? (a ? b ? c) 用 AQ ? AM ? MQ 即证. 3

3. (1)空间向量的坐标:空间直角坐标系的 x 轴是横轴(对应为横坐标) 轴是纵轴(对 ,y 应为纵轴) 轴是竖轴(对应为竖坐标). ,z ① a =(a1,a2,a3), b ? (b1 , b2 , b3 ) ,则 令
a ? b ? (a1 ?b1 ,a 2 ?b 2 ,a 3 ?b 3 )

? a ? (?a1 , ?a 2 , ?a 3 )(? ? R)
a1 a 2 a 3 ? ? b1 b 2 b 3

a ? b ?a1 b1 ?a 2 b 2 ?a 3 b 3 a ? b ?a1 b1 ?a 2 b 2 ?a 3 b 3 ? 0

a ∥b ?a1 ? ?b1 ,a 2 ? ?b 2 ,a 3 ? ?b 3 (? ? R) ?

a ? a ? a ? a 1 2 ?a 2 2 ?a 3

2

(用到常用的向量模与向量之间的转化: a 2 ? a ? a ? a ? a ? a )

? ? a1b1 ? a 2 b2 ? a3 b3 ? ? a ?b cos ? a, b ?? ? ? ? 2 2 2 2 2 2 | a |?|b | a1 ? a 2 ? a3 ? b1 ? b2 ? b3

②空间两点的距离公式: d ? ( x 2 ? x1 ) 2 ? ( y 2 ? y1 ) 2 ? ( z 2 ? z1 ) 2 . (2)法向量:若向量 a 所在直线垂直于平面 ? ,则称这个向量垂直于平面 ? ,记作 a ? ? , 如果 a ? ? 那么向量 a 叫做平面 ? 的法向量. (3)用向量的常用方法: ①利用法向量求点到面的距离定理:如图,设 n 是平面 ? 的法向量,AB 是平面 ? 的一条射 线,其中 A ?? ,则点 B 到平面 ? 的距离为
| AB? n | |n|

.

②利用法向量求二面角的平面角定理: n1 , n 2 分别是二面角 ? ? l ? ? 中平面 ? , ? 的法向量, 设 则 n1 , n 2 所成的角就是所求二面角的平面角或其补角大小 n1 , n 2 方向相同, ( 则为补角, 1 , n 2 n 反方,则为其夹角). ③证直线和平面平行定理:已知直线 a ?? 平面 ? , A ? B ? a, C ? D ? ? ,且 CDE 三点不共线, 则 a∥ ? 的充要条件是存在有序实数对 ? ? ? 使 AB ? ?CD ? ?CE .(常设 AB ? ?CD ? ?CE 求 解 ? , ? 若 ? , ? 存在即证毕,若 ? , ? 不存在,则直线 AB 与平面相交).
A n


B

B

?
C A



n1

C

D E

? n2

?

?

用爱与责任成就每一个孩子

8

II. 竞赛知识要点 一、四面体. 1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质: ①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心; ②四面体的四个面组成六个二面角的角平分面交于一点, 这一点叫做此四面体的内接球的球 心; ③四面体的四个面的重心与相对顶点的连接交于一点, 这一点叫做此四面体的重心, 且重心 将每条连线分为 3︰1; ④12 个面角之和为 720° 每个三面角中任两个之和大于另一个面角, , 且三个面角之和为 180° . 2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面 几何的直角三角形. (在直角四面体中,记 V、l、S、R、r、h 分别表示其体积、六条棱长 2 之和、表面积、外接球半径、内切球半径及侧面上的高) ,则有空间勾股定理:S △ABC+S2△ 2 2 BCD+S △ABD=S △ACD. 3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据 定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体, 反 之也可以将一个等腰四面体拼补成一个长方体. (在等腰四面体 ABCD 中,记 BC = AD =a,AC = BD = b,AB = CD = c,体积为 V,外接 B 球半径为 R,内接球半径为 r,高为 h) ,则有 ①等腰四面体的体积可表示为 V ?
1 3 b 2 ?c 2 ?a 2 c 2 ? a 2 ?b 2 a 2 ?b 2 ?c 2 ? ? ; 2 2 2 A
O D

C

2 ②等腰四面体的外接球半径可表示为 R ? 4

a ?b ?c ;
2 2 2

③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为 m ?

2 3

a 2 ?b 2 ? c 2 ;

④h = 4r. 二、空间正余弦定理. 空间正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin∠CBD/sin∠C-BA-D 空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D 立体几何知识要点 一、知识提纲 (一)空间的直线与平面 ⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法. ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线. ⑴公理四(平行线的传递性) .等角定理. ⑵异面直线的判定:判定定理、反证法. ⑶异面直线所成的角:定义(求法) 、范围. ⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质. ⒋直线和平面垂直 ⑴直线和平面垂直:定义、判定定理. ⑵三垂线定理及逆定理. 5.平面和平面平行
用爱与责任成就每一个孩子 9

两个平面的位置关系、两个平面平行的判定与性质. 6.平面和平面垂直 互相垂直的平面及其判定定理、性质定理. (二)直线与平面的平行和垂直的证明思路(见附图) (三)夹角与距离 7.直线和平面所成的角与二面角 ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平 面所成的角、直线和平面所成的角. ⑵二面角:①定义、范围、二面角的平面角、直二面角. ②互相垂直的平面及其判定定理、性质定理. 8.距离 ⑴点到平面的距离. ⑵直线到与它平行平面的距离. ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段. ⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段. (四)简单多面体与球 9.棱柱与棱锥 ⑴多面体. ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质. ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、 正方体;平行六面体的性质、长方体的性质. ⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质. ⑸直棱柱和正棱锥的直观图的画法. 10.多面体欧拉定理的发现 ⑴简单多面体的欧拉公式. ⑵正多面体. 11.球 ⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离. ⑵球的体积公式和表面积公式. 二、常用结论、方法和公式 1.从一点 O 出发的三条射线 OA、OB、OC,若∠AOB=∠AOC,则点 A 在平面∠BOC 上的射影在∠BOC 的平分线上; 2. 已知:直二面角 M-AB-N 中,AE ? M,BF ? N,∠EAB= ? 1 ,∠ABF= ? 2 ,异面

? 直线 AE 与 BF 所成的角为 ? ,则 cos? ? cos?1 cos 2;
3.立平斜公式: 如图, 和平面所成的角是 ? 1 , 在平面内, 和 AB 的射影 BA1 AB AC BC 成 ? 2 ,设∠ABC= ? 3 ,则 cos ? 1 cos ? 2 =cos ? 3 ; 4.异面直线所成角的求法: (1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线; (2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方 体等,其目的在于容易发现两条异面直线间的关系;
用爱与责任成就每一个孩子
? B D C A

A1

10

5.直线与平面所成的角 斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜 线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足 和斜足的连线,是产生线面角的关键; 6.二面角的求法 (1)定义法:直接在二面角的棱上取一点(特殊点) ,分别在两个半平面内作棱的垂 线,得出平面角,用定义法时,要认真观察图形的特性; (2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定 理作出二面角的平面角; (3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的 交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直; (4)射影法:利用面积射影公式 S 射=S 原 cos ? ,其中 ? 为平面角的大小,此法不必在 图形中画出平面角; 特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后 再选用上述方法(尤其要考虑射影法) 。 7.空间距离的求法 (1) 两异面直线间的距离, 高考要求是给出公垂线, 所以一般先利用垂直作出公垂线, 然后再进行计算; (2)求点到直线的距离,一般用三垂线定理作出垂线再求解; (3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知 面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求 解; 8.正棱锥的各侧面与底面所成的角相等,记为 ? ,则 S 侧 cos ? =S 底; 9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为 ? , ? , ? , 因此有 cos2 ? +cos2 ? +cos2 ? =1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为
? , ? , ? , 则有 cos
2

? +cos2 ? +cos2 ? =2;

10.正方体和长方体的外接球的直径等与其体对角线长; 11.欧拉公式:如果简单多面体的顶点数为 V,面数为 F,棱数为 E.那么 V+F-E=2;并且 棱数 E=各顶点连着的棱数和的一半=各面边数和的一半; 12.柱体的体积公式:柱体(棱柱、圆柱)的体积公式是 V 柱体=Sh.其中 S 是柱体的底面积,h 是柱体的高. 13.直棱柱的侧面积和全面积 S 直棱柱侧= c ? (c 表示底面周长, ? 表示侧棱长)

S 棱柱全=S 底+S 侧

14.棱锥的体积:V 棱锥=

1 Sh ,其中 S 是棱锥的底面积,h 是棱锥的高。 3
2

15.球的体积公式 V= ?R 3 ,表面积公式 S ? 4?R ;掌握球面上两点 A、B 间的距离 求法: (1)计算线段 AB 的长, (2)计算球心角∠AOB 的弧度数;(3)用弧长公式计算 劣弧 AB 的长;

4 3

用爱与责任成就每一个孩子

11

典型的例题-----解答题 1.(2011· 福建高考改编)如图,四棱锥 P-ABCD 中,PA⊥底面 ABCD.四边形 ABCD 中,AB⊥AD,AB+AD=4,CD= 2,∠CDA =45° . (1)求证:平面 PAB⊥平面 PAD; (2)设 AB=AP.若直线 PB 与平面 PCD 所成的角为 30° ,求线段 AB 的长.

2.(2012· 北京东城区模拟)正三角形 ABC 的边长为 4,CD 是 AB 边上的高,E、F 分别 是 AC、BC 边的中点,现将△ABC 沿 CD 翻折成直二面角 A-DC-B. (1)试判断直线 AB 与平面 DEF 的位置关系,并说明理由; (2)求二面角 E-DF-C 的余弦值; (3)在线段 BC 上是否存在一点 P,使 AP⊥DE?证明你的结论.

用爱与责任成就每一个孩子

12

3.(2011· 江苏高考)如图,在正四棱柱 ABCD-A1B1C1D1 中,AA1=2,AB=1,点 N 是 BC 的中点,点 M 在 CC1 上.设二面角 A1-DN-M 的大小为 θ. (1)当 θ=90° 时,求 AM 的长; (2)当 cosθ= 6 时,求 CM 的长. 6

4【2012 年上海市普通高等学校春季招生考试】 如图,正四棱柱 ABCD ? A B1C1D1 的底面边长为 1,高为 2, M 为线段 AB 的中点,求: 1 (1) 三棱锥 C1 ? MBC 的体积; (2) 异面直线 CD 与 MC1 所成角的大小(结果用反三角函数值表示)

用爱与责任成就每一个孩子

13

5.【2012 北京海淀区高三年级第一学期期末试题】
在四棱锥 P - ABCD 中,底面 ABCD 是直角梯形, AB ∥ CD , ? ABC

90 ,

AB = PB = PC = BC = 2CD ,平面 PBC ^ 平面 ABCD .
(Ⅰ)求证: AB ^ 平面 PBC ; (Ⅱ)求平面 PAD 和平面 BCP 所成二面角(小于 90° )的大小; (Ⅲ)在棱 PB 上是否存在点 M 使得 CM ∥平面 PAD ?若存在,求 请说明理由.
P

PM 的值;若不存在, PB

C

D

B

A

6.【河北省唐山市 2012 届高三上学期摸底考试数学】 (理) 如 图 , 在 四 棱 锥 S — ABCD 中 , SD ? 底 面 ABCD , 底 面 ABCD 是 矩 形 , 且

SD ? AD ? 2 AB ,E 是 SA 的中点。
(1)求证:平面 BED ? 平面 SAB; (2)求平面 BED 与平面 SBC 所成二面角(锐角)的大小。

用爱与责任成就每一个孩子

14

7.【2012 年长春市高中毕业班第一次调研测试】
(理)如图,在底面为直角梯形的四棱锥 P AC 中 ? BD AB A 9 PD?平面 A C , A D, 0 ∥B ° C C, ? ? B D D?1,

A B? 3, B 4. C? ⑴求证: BD ? P C ; ⑵求直线 AB 与平面 PDC 所成的角; ?? ? ? ?? ?? ⑶设点 E 在棱 P C 上, P ? P , E ?C 若 DE ∥平面 PAB ,求 ? 的值.

8.【浙江省 2012 年高三调研理科数学测试卷】 (理)四棱锥 P-ABCD 中,PA⊥平面 ABCD,E 为 A D 的 中 点 , A B C E 为 菱 形 , ∠BAD=120° ,PA=AB,G,F 分别是线段 CE, PF CG PB 上的动点,且满足 = =λ∈(0,1). PB CE (Ⅰ) 求证:FG∥平面 PDC; (Ⅱ) 求 λ 的值,使得二面角 F-CD-G 的平面 2 角的正切值为 .

3

用爱与责任成就每一个孩子

15



更多相关文章:
高中数学复习材料:立体几何(A3打印版)
共 6 页,第 3 页 高中数学复习资料汇编﹒ 高中数学复习资料汇编﹒立体几何 【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。...
高中数学第一轮复习立体几何
高中数学第一轮复习立体几何_数学_高中教育_教育专区。高三数学第一轮复习—空间...(4)完成三视图绘制,把能看见的轮廓线和棱用实线表示,不能看见的用虚线表示. ...
高中数学立体几何总复习
高中数学立体几何总复习 隐藏>> 高中数学高中数学-立体几何考试内容平面及其基本性质.平面图形直观图的画法. 平行直线. 对应边分别平行的角. 异面直线所成的角. ...
高中数学一轮复习立体几何经典题型举例
高中数学一轮复习立体几何经典题型举例_数学_高中教育_教育专区。理科教学贴心服务专家 www.cakestudy.com 高中数学一轮复习立体几何经典题型举例 1.如图,在三棱柱 ...
立体几何复习(知识点+经典习题)
立体几何复习(知识点+经典习题)_高二数学_数学_高中教育_教育专区。【高考链接】 1.设 ? 和 ? 为不重合的两个平面,给出下列命题: (1)若 ? 内的两条相交...
高中数学立体几何总复习文科单元检测卷
绝密★启用前 高中数学立体几何总复习文科单元检测卷 立体几何总复习考试范围:数列;考试时间:100 分钟;命题人:段奎 学校:___姓名:___班级:___考号:___ 题...
高中数学立体几何复习
高中数学 立体几何 复习卷 4页 2财富值 2011届高中数学立体几何复... 9页 5财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此...
高中数学立体几何重要知识点(经典)
| AB ? n | |n| 3、直线到平面的距离,两个平行平面的距离通常都可以转化...高中数学立体几何总复习... 15页 免费 二面角(教师版) 12页 免费 二面角大小...
上海高中数学立体几何练习(打印)
上海高中数学之立体几何练习(打印)_高三数学_数学_高中教育_教育专区。帮助学生提高...高中数学立体几何总复习... 15页 免费 [高中数学]立体几何.球专... 4页 ...
高中数学立体几何复习要点
高中数学立体几何复习要点_高二数学_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档高中数学立体几何复习要点_高二数学_数学_高中教育_教育专区。高中...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图