9512.net
甜梦文库
当前位置:首页 >> 高二数学 >>

(教案)1.2独立性检验的基本思想及其初步应用


第一课时

1.2 独立性检验的基本思想及其初步应用(一) (共 2 课时)

教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据 教学要求 的列联表、 柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高, 让 学生亲身体验独立性检验的实施步骤与必要性. 教学重点:理解独立性检验的基本思想及实施步骤. 教学重点 教学难点:了解独立性检验的基本思想、了解随机变量 K 2 的含义. 教学难点 教学过程: 教学过程 复习准备: 一、复习准备 回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析) 、步骤. 讲授新课: 二、讲授新课: 1. 教学与列联表相关的概念: 教学与列联表相关的概念: ① 分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量 的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两 个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示, 但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男” ,用“1”表示“女”. ② 列联表: 分类变量的汇总统计表 (频数表) 一 . 不患肺癌 患肺癌 总计 般我们只研究每个分类变量只取两个值, 这样的列 7775 42 7817 不吸烟 联表称为 2 × 2 . 如吸烟与患肺癌的列联表: 2099 49 2148 吸 烟 2. 教学三维柱形图和二维条形图的概念: 教学三维柱形图和二维条形图的概念: 9874 91 9965 总 计 由列联表可以粗略估计出吸烟者和不吸烟者患肺 癌的可能性存在差异.(教师在课堂上用 EXCEL 软件演示三维柱形图和二维条形图,引导学 软件演示三维柱形图和二维条形图, ( 生观察这两类图形的特征,并分析由图形得出的结论) 生观察这两类图形的特征,并分析由图形得出的结论) 3. 独立性检验的基本思想: 独立性检验的基本思想: ① 独立性检验的必要性 (为什么中能只凭列联表的数据和图形下结论?) 列联表中的数据 : 是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在 多大程度上适用于总体. ② 独立性检验的步骤(略)及原理(与反证法类似) : 反证法 假设检验 要证明结论 A 备择假设 H 1 在 A 不成立的前提下进行推 理 推出矛盾, 意味着结论 A 成立 没有找到矛盾, 不能对 A 下任 何结论,即反证法不成功 ③ 上例的解决步骤 第一步:提出假设检验问题 第二步:选择检验的指标 在 H 1 不成立的条件下,即 H 0 成立的条件下进行推理 推出有利于 H 1 成立的小概率事件(概率不超过 α 的事件) 发生,意味着 H 1 成立的可能性(可能性为(1- α ) )很大 推出有利于 H 1 成立的小概率事件不发生,接受原假设 H 0 :吸烟与患肺癌没有关系 ? H 1 :吸烟与患肺癌有关系

n(ad ? bc)2 (它越小,原假设“H 0 :吸 (a + b)(c + d )(a + c)(b + d ) 烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1 :吸烟与患肺癌有关系” 成立的可能性越大. 第三步:查表得出结论 P(k2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83 K2 =

第二课时

1.2 独立性检验的基本思想及其初步应用(二)

教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据 教学要求

的列联表、 柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高, 让 学生亲身体验独立性检验的实施步骤与必要性. 教学重点:理解独立性检验的基本思想及实施步骤. 教学重点 教学难点:了解独立性检验的基本思想、了解随机变量 K 2 的含义. 教学难点 教学过程: 教学过程 教学过程: 教学过程 复习准备: 一、复习准备 独立性检验的基本步骤、思想 讲授新课: 二、讲授新课: 1. 教学例 1: : 例 1 在某医院,因为患心脏病而住院的 665 名男性病人中,有 214 人秃顶;而另外 772 名 不是因为患心脏病而住院的男性病人中有 175 名秃顶. 分别利用图形和独立性检验方法判断 秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效? ① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有 第一步: 关”的结论; 第二步: 第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果; 第三步: 第三步:由学生计算出 K 2 的值; 第四步: 第四步:解释结果的含义. ② 通过第 2 个问题,向学生强调“样本只能代表相应总体” ,这里的数据来自于医院的住院 病人, 因此题目中的结论能够很好地适用于住院的病人群体, 而把这个结论推广到其他群体 则可能会出现错误,除非有其它的证据表明可以进行这种推广. 2. 教学例 2: : 例 2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机 抽取 300 名学生,得到如下列联表: 喜欢数学课程 不喜欢数学课程 总 计 37 85 122 男 35 143 178 女 72 228 300 总 计 由表中数据计算得到 K 2 的观察值 k ≈ 4.513 . 在多大程度上可以认为高中生的性别与是否数 学课程之间有关系?为什么? 学生自练,教师总结) (学生自练,教师总结) 强调: 强调:①使得 P ( K 2 ≥ 3.841) ≈ 0.05 成立的前提是假设“性别与是否喜欢数学课程之间没有 关系”.如果这个前提不成立,上面的概率估计式就不一定正确; ②结论有 95%的把握认为“性别与喜欢数学课程之间有关系”的含义; ③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算 K 2 的值解决实际问题, 而没有必要画相应的图形,但是图形的直观性也不可忽视. 3. 小结:独立性检验的方法、原理、步骤 小结: 不健康 健 康 总计 巩固练习: 三、巩固练习: 41 626 667 不优秀
某市为调查全市高中生学习状况是否对生理健康有 影响,随机进行调查并得到如下的列联表:请问有 多大把握认为 “高中生学习状况与生理健康有关” ?

优 总

秀 计

37 78

296 922

333 1000



更多相关文章:
(教案)1.2独立性检验的基本思想及其初步应用
(教案)1.2独立性检验的基本思想及其初步应用_高二数学_数学_高中教育_教育专区。第一课时授课教师: 王宏 1.2 独立性检验的基本思想及其初步应用(一) (共 2 ...
1.2独立性检验的基本思想及其初步应用(二)》教学案3
1.2独立性检验的基本思想及其初步应用(二)》教学案3_高二数学_数学_高中教育_教育专区。《1.2独立性检验的基本思想及其初步应用(二)》教学案3 教学目标 (一...
1.2独立性检验的基本思想及其初步应用一》教学案
1.2独立性检验的基本思想及其初步应用一》教学案_高二数学_数学_高中教育_教育专区。1.2独立性检验的基本思想及其初步应用(一) 教学要求: 通过探究“吸烟是否...
1.2独立性检验的基本思想及其初步应用(二)》教学案2
1.2独立性检验的基本思想及其初步应用(二)》教学案2_高二数学_数学_高中教育_教育专区。《1.2独立性检验的基本思想及其初步应用(二)》教学案 教学目标 通过...
1.2独立性检验的基本思想及其初步应用二》教学案
1.2独立性检验的基本思想及其初步应用二》教学案_高二数学_数学_高中教育_教育专区。1.2独立性检验的基本思想及其初步应用(二) 教学要求: 通过探究“吸烟是否...
1.2独立性检验的基本思想及其初步应用三》教学案
1.2独立性检验的基本思想及其初步应用三》教学案_高二数学_数学_高中教育_教育专区。《1.2 独立性检验的基本思想及其初步应用(三)》 教学案 【问题导思】 ...
1.2独立性检验的基本思想及其初步应用(学、教案)
1.2独立性检验的基本思想及其初步应用(学、教案)_其它课程_高中教育_教育专区。...1. 2 独立性检验的基本思想及其初步应用 课前预习学案一、预习目标: 能用所...
独立性检验的基本思想及其初步应用教案2
课题:独立性检验的基本思想及其初步应用 课题:独立性检验的基本思想及其初步应用(课时) 教学目标:1、理解独立性检验的基本思想; 教学目标 2、会从列联表、柱...
数学:1.2独立性检验的基本思想及其初步应用教案(新...
数学:1.2《独立性检验的基本思想及其初步应用》教案(新人教A版选修1-2)_理学_高等教育_教育专区。第一课时 1.2 独立性检验的基本思想及其初步应用(一) (共 ...
1.2独立性检验的基本思想及其初步应用
1.2《独立性检验的基本思想及其初步应用》_高三数学_数学_高中教育_教育专区。1.2 独立性检验的基本思想及其初步应用 基础梳理 1.分类变量的定义. 如果某种变量...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图