9512.net
甜梦文库
当前位置:首页 >> 数学 >>

三角函数推导、应用公式大全



三角函数推导、应用公式大全
一、倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 二、平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 三

、平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 四、一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明: (sina+sinθ) * (sina-sinθ) =2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 五、坡度公式 我们通常半坡面的铅直高度 h 与水平高度 l 的比叫做坡度 (也叫坡比) ,用 字母 i 表示, 即 i=h / l, 坡度的一般形式写成 l : m 形式,如 i=1:5.如果把坡面与水平面 的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α 的对边/∠α 的斜边 余弦:cos α=∠α 的邻边/∠α 的斜边 正切:tan α=∠α 的对边/∠α 的邻边 余切:cot α=∠α 的邻边/∠α 的对边 二倍角公式 正弦 sin2A=2sinA· cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1

即 Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin? a)+(1-2sin? a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos? a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin? a) =4sina[(√3/2)?-sin? a] =4sina(sin? 60° -sin? a) =4sina(sin60° +sina)(sin60° -sina) =4sina*2sin[(60+a)/2]cos[(60° -a)/2]*2sin[(60° -a)/2]cos[(60° -a)/2] =4sinasin(60° +a)sin(60° -a) cos3a=4cos^3a-3cosa =4cosa(cos? a-3/4) =4cosa[cos? a-(√3/2)^2] =4cosa(cos? a-cos? 30° ) =4cosa(cosa+cos30° )(cosa-cos30° ) =4cosa*2cos[(a+30° )/2]cos[(a-30° )/2]*{-2sin[(a+30° )/2]sin[(a-30° )/2]} =-4cosasin(a+30° )sin(a-30° ) =-4cosasin[90° -(60° -a)]sin[-90° +(60° +a)] =-4cosacos(60° -a)[-cos(60° +a)] =4cosacos(60° -a)cos(60° +a) 上述两式相比可得 tan3a=tanatan(60° -a)tan(60° +a) 现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在 数学学习中会起到重要作用。包括一些图像问题和函数问题中 三倍角公式 sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 其他 sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式 sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式 sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式 sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式 sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*t anA^6) 八倍角公式 sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*t anA^6+tanA^8)

九倍角公式 sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126 *tanA^4-84*tanA^6+9*tanA^8) 十倍角公式 sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5 +16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1 )) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA ^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) N 倍角公式 根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令 sinθ=s,cosθ=c 考虑 n 为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... => 比较两边的实部与虚部 实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数 n, 1. cos(nθ): 公式中出现的 s 都是偶次方,而 s^2=1-c^2(平方关系),因此全部都 可以改成以 c(也就是 cosθ)表示。 2. sin(nθ): (1)当 n 是奇数时: 公式中出现 的 c 都是偶次方, 而 c^2=1-s^2(平方关系), 因此全部都可以改成以 s(也就是 sinθ) 表示。 (2)当 n 是偶数时: 公式中出现的 c 都是奇次方,而 c^2=1-s^2(平方关 系), 因此即使再怎么换成 s, 都至少会剩 c(也就是 cosθ)的一次方无法消掉。(例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式 tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ) cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ -cosαsinβ 积化和差 sinαsinβ =-[cos(α+β)-cos(α-β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 双曲函数 sh a = [e^a-e^(-a)]/2 ch a = [e^a+e^(-a)]/2 th a = sin h(a)/cos h(a) 公式一: 设 α 为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角 α 与 -α 的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到 π-α 与 α 的三角函数值之间的关系:

sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到 2π-α 与 α 的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α 及 3π/2±α 与 α 的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上 k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A? +B? +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容 三角函数的诱导公式(六公式) 公式一 sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 公式二 sin(π/2-α) = cosα

cos(π/2-α) = sinα 公式三 sin(π/2+α) = cosα cos(π/2+α) = -sinα 公式四 sin(π-α) = sinα cos(π-α) = -cosα 公式五 sin(π+α) = -sinα cos(π+α) = -cosα 公式六 tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式 sinα=2tan(α/2)/[1+(tan(α/2))?] cosα=[1-(tan(α/2))?]/[1+(tan(α/2))?] tanα=2tan(α/2)/[1-(tan(α/2))?] 其它公式 (1) (sinα)^2+(cosα)^2=1(平方和公式) (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2 即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当 x+y+z=nπ(n∈Z)时,该关系式也成立 由 tanA+tanB+tanC=tanAtanBtanC 可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a) (seca)^2+(csca)^2=(seca)^2(csca)^2 幂级数展开式 sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞) cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞) arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1) arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1) arctan x = x - x^3/3 + x^5/5 -……(x≤1) 无限公式 sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)…… cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)…… tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……] secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……] (sinx)x=cosx/2cosx/4cosx/8…… (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π arctan x = x - x^3/3 + x^5/5 -……(x≤1) 和自变量数列求和有关的公式 sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2) cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2sin(nx/2)]/sin(x/2) tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosn x) sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx) 编辑本段 内容规律 三角函数看似很多, 很复杂,但只要掌握了三角函数的本质及内部规律就会 发现三角函数各个公式之间有强大的联系。 而掌握三角函数的内部规律及本质也 是学好三角函数的关键所在。 1.三角函数本质: [1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点, 下面所有的三角公式都可以从这里出发推导出来,比如 以推导 sin(A+B) = sinAcosB+cosAsinB 为例:

推导: 首先画单位圆交 X 轴于 C,D,在单位圆上有任意 A,B 点。角 AOD 为 α, BOD 为 β,旋转 AOB 使 OB 与 OD 重合,形成新 A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2 与(a-b)/2) 单位圆定义 单位圆 六个三角函数也可以依据半径为一中心为原点的单位圆来定义。 单位圆定义 在实际计算上没有大的价值; 实际上对多数角它都依赖于直角三角形。但是单位 圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。 它也提供了一个图象, 把所有重要的三角函数都包含了。 根据勾股定理,单位圆的等式是: 图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺 时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与 单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角 形确保了这个公式;半径等于斜边且长度为 1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1 的一 种查看无限个三角形的方式。 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

2 三角函数值表
角α 弧度制 sinα cosα tanα 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° o π /6 π /4 π /3 π /2 2π /3 3π /4 5π /6 π 3π /2 o 1/2 √2/2 √3/2 1 √3/2 -√2/2 1/2 0 1 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 1 0 o √3/3 1 √3 不存 -√3 -1 -√3/3 0 不存 在 在 360° 2π 0 1 0



更多相关文章:
三角函数推导,公式应用大全
三角函数推导,公式应用大全两角和的正弦与余弦公式: (1) (2) sin(α+β)=sinαcosβ+cosαsinβ; cos(α+β)=cosαcosβ-sinαsinβ; 教材的思路是在...
三角函数推导,公式应用大全
三角函数推导,公式应用大全_数学_自然科学_专业资料。这里有三角函数的推导方法和所用三角函数的公式 三角函数公式及证明 基本定义 1.任意角的三角函数值: 在此...
三角函数推导,公式应用大全
三角函数推导,公式应用大全_初三数学_数学_初中教育_教育专区。三角函数定义 把角度 θ 作为自变量,在直角坐标系里画个半径为 1 的圆(单位圆),然后 角的一边与...
高中数学 三角函数公式大全
我们还可以单位圆中的有向线段表示任意角的三角函数:如图,与 单位圆有关的...cos β = ?2 sin α+β sin α?β…⑷ 2 了解和差化积公式推导,有...
三角函数定义及其三角函数公式大全
三角函数定义及其三角函数公式大全_初三数学_数学_初中教育_教育专区。本文档主要...(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方...
三角函数的二倍角公式及应用
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS ...三角函数的二倍角公式及应用_数学_高中教育_教育专区...知、加工、转换,运用已知条件和推算手段逐步达到目的...
三角函数公式及其应用
4三角函数公式与综合应用... 6页 4下载券 三角函数公式应用推导 1页 1下载...高中三角函数公式大全 9页 1下载券三​角​函​数​公​式​及​...
三角函数的求导公式
这些三角函数推导过程详见: 蓝雪舞梦2009-03-28 ...所以后来欧拉就索性把用这些运算连接变数 x 和常数...高中三角函数公式大全 9页 1下载券 基本求导积分公式...
必修四三角函数公式大全
? x r x y 注:我们还可以单位圆中的有向线段表示任意角的三角函数:如图...2 sin ??? 2 了解和差化积公式推导,有助于我们理解并掌握好公式: ???...
高中数学_三角函数公式大全
? x r x y r y 注:我们还可以单位圆中的有向线段表示任意角的三角函数...sin ??? 2 了解和差化积公式推导,有助于我们理解并掌握好公式: ??? ?...
更多相关标签:
三角函数公式推导    三角函数诱导公式推导    三角函数万能公式推导    三角函数和差公式推导    三角函数公式推导过程    三角函数半角公式推导    反三角函数公式推导    三角函数和角公式推导    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图