9512.net
甜梦文库
当前位置:首页 >> 数学 >>

A-level 进阶数学真题 03年 纯数学



CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certi?cate of Education Advanced Level FURTHER MATHEMATICS Paper 1 May/June 2003 3 hours
Additional materials: Answer Booklet/Paper Graph pap

er List of Formulae (MF10)

9231/01

READ THESE INSTRUCTIONS FIRST If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction ?uid. Answer all the questions. Give non-exact numerical answers correct to 3 signi?cant ?gures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is speci?ed in the question. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The use of a calculator is expected, where appropriate. Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit. You are reminded of the need for clear presentation in your answers.

This document consists of 5 printed pages and 3 blank pages.
? CIE 2003

[Turn over

2 1

The diagram shows one loop of the curve whose polar equation is r = a sin 2θ , where a is a positive constant. Find the area of the loop, giving your answer in terms of a and π . [4] Prove by induction that, for all N ≥ 1,

2

∑ n(n + 1)2
n=1

N

n+2

n

=1?

1 . (N + 1)2N

[5]

3

Let v1 , v2 , v3 , . . . be a sequence and let

un = nvn ? (n + 1)vn+1 ,
for n = 1, 2, 3, . . . . Find

n=1

∑ un .

N

[2]

In each of the following cases determine whether the series u1 + u2 + u3 + . . . is convergent, and justify your conclusion. Give the sum to in?nity where this exists.
(i) vn = n 2 . (ii) vn = n 2 .
?3 ?1

[2] [2]

4

The curve C has equation y =

x2 ? 4 . x?3
[3]

(i) Find the equations of the asymptotes of C.

(ii) Draw a sketch of C and its asymptotes. Give the coordinates of the points of intersection of C with the coordinate axes. [4]

[You are not required to ?nd the coordinates of any turning points.]

9231/01/M/J/03

3 5

The equation 8x3 + 12x2 + 4x ? 1 = 0 has roots α , β , γ . Show that the equation with roots 2α + 1, 2β + 1, 2γ + 1 is

y3 ? y ? 1 = 0.
The sum (2α + 1)n + (2β + 1)n + (2γ + 1)n is denoted by Sn . Find the values of S3 and S?2 .
6

[3] [5]

Use de Moivre’s theorem to show that cos 6θ = 32 cos6 θ ? 48 cos4 θ + 18 cos2 θ ? 1. Hence solve the equation 64x6 ? 96x4 + 36x2 ? 1 = 0, giving each root in the form cos kπ . The variables x and y are related by the equation x4 + y4 = 1, where 0 < x < 1 and 0 < y < 1.
(i) Obtain an equation which relates x, y,

[5]

[4]

7

dy d2 y , , and deduce that dx dx2 [6]

d2 y 3x2 = ? . y7 dx2

(ii) Given that y = b1 when x = a1 and that y = b2 when x = a2 , where a1 < a2 , prove that the mean d3 y value of 3 with respect to x over the interval a1 ≤ x ≤ a2 is dx

3(a2 b7 ? a2 b7 ) 1 2 2 1

b7 b7 (a ? a1 ) 1 2 2

.

[4]

9231/01/M/J/03

[Turn over

4 8

The linear transformation T :

4



4

is represented by the matrix A, where ?1 ?1 ?2 ?3 ?2 ?1 ?3 ?5 3 11 ? ?. ? 14 ? 17 [7]

1 ?2 A=? ?3 ? 4

Find the rank of A and a basis for the null space of T.

1 ? ?2 ? ? is denoted by e. Show that there is a solution of the equation Ax = Ae of the form The vector ? ? ?1 ? ? ? ?1 p ?q? ?, where p and q are to be found. x=? [4] ?1? ? ? 1 The variables x and t, where x > 0 and 0 ≤ t ≤ 1 π , are related by 2 d2 x dx x 2 + dt dt
2

9

+ 5x

dx + 3x2 = 3 sin 2t + 15 cos 2t, dt

and the variables x and y are related by y = x2 . Show that d2 y dy + 5 + 6y = 6 sin 2t + 30 cos 2t. 2 dt dt Hence ?nd x in terms of t, given that x = 2 and 3 dx = ? when t = 0. dt 2 [3]

[10]

10

Find the acute angle between the planes with equations

x ? 2y + ? 9 = 0

and

x + y ? + 2 = 0.

[3]

The planes meet in the line l, and A is the point on l whose position vector is pi + qj + k.
(i) Find p and q. (ii) Find a vector equation for l.

[2] [3]

The non-coincident planes Π1 and Π2 are both perpendicular to l. The perpendicular distance from A √ √ to Π1 is 14 and the perpendicular distance from A to Π2 is also 14. Find equations for Π1 and Π2 in the form ax + by + c = d. [5]

9231/01/M/J/03

5 11

Answer only one of the following two alternatives.

EITHER

Given that

In =

1 0

xn e?α x dx,

where α is a positive constant and n is a non-negative integer, show that for n ≥ 1,

α In = nIn?1 ? e?α .

[3]

Hence, or otherwise, ?nd the coordinates of the centroid of the ?nite region bounded by the x-axis, the line x = 1 and the curve y = x e?x , giving your answers in terms of e. [11]

OR

The vector e is an eigenvector of each of the n × n matrices A and B, with corresponding eigenvalues λ and ? respectively. Prove that e is an eigenvector of the matrix AB with eigenvalue λ ? . [3] Find the eigenvalues and corresponding eigenvectors of the matrix C, where
C=

0 1 2

1 2 1

4 ?1 2

.

[8]

Verify that one of the eigenvectors of C is an eigenvector of the matrix D, where
D=

?3 0 0

1 ?2 0

1 4 ?4

.

[2]

Hence ?nd an eigenvalue of the matrix CD.

[1]

9231/01/M/J/03

6 BLANK PAGE

9231/01/M/J/03

7 BLANK PAGE

9231/01/M/J/03

8 BLANK PAGE

9231/01/M/J/03



更多相关文章:
A-Level 课程解析之数学介绍
数学和进阶数学有连续性,但这是 A-Level 的两门...FP3 纯数学中至少选择两项,一般会选择 FP1、FP2 ...在考查方式上,考 试题型单一,全部是简答题,没有...
a-alevel 数学简介_图文
A- Level 课程一般在中国开设数学、进阶数学(或称高等数学)、物理、计算 机学...题型固定性:没有选择题和填空题,只有解答题,纯数学 l 和纯数学 3 的试 卷...
5年级数学趣味进阶题
5年级数学趣味进阶题_数学_小学教育_教育专区。五年级数学趣味进阶题 大人小孩分吃100个包子 100个包子,100个人吃,1个大人吃3个,3个小孩吃1个,多少个大人 和...
七上数学整式加减进阶式习题
七上数学整式加减进阶式习题_数学_初中教育_教育专区。七上数学整式加减进阶式习题第二章 整式的加减 2.1 A 组题 1.下列单项式书写不规范的一共有( ①3 ) ...
什么是数学进阶
什么是数学进阶数学进阶的含义是打破了我们惯常的六年制数学学习的模式, 将小学...A-level 进阶数学真题 考... 9页 免费 A-level 进阶数学真题 0... 8页...
五年级上期数学进阶训练
五年级上期数学进阶训练_五年级数学_数学_小学教育_教育专区。小数乘法、小数除法、简易方程都有,笔者将题目一律由易到难编排过,适合基础薄弱的学生做复习之用,或者...
几何进阶角度类题目
几何进阶角度类题目_初二数学_数学_初中教育_教育专区。1.如图在△ABC 中,∠BCA=90°,D、E 在 AB 上,BD=BC,AE=AC,求∠ECD. B E D C A 2 如图,D、...
七上数学有理数进阶式练习题
七上数学有理数进阶式练习题_数学_初中教育_教育专区。七上数学有理数进阶式练习题第一章 有理数 1.1 正数和负数 A 组题 1.把下列具有相反意义的量用线连...
假设法进阶针对练习
假设法进阶针对练习_三年级数学_数学_小学教育_教育专区。高斯数学(奥数三年级)...假设法练习题 1页 5下载券 六年级假设法习题 3页 免费 第二课 假设法习题...
2015考研数学大纲 解密高等数学高分进阶之路
2015考研数学大纲 解密高等数学高分进阶之路_研究生入学考试_高等教育_教育专区。2015考研数学大纲 中公考研数学频道提供考研数学大纲解析,考研数学真题,考研数学复习计划...
更多相关标签:
sat2数学level2真题    cfa level 1 真题    cda level1 历年真题    ssat upper level真题    a level考试真题    a level数学真题    ssat lower level真题    a level 真题    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图