9512.net
甜梦文库
当前位置:首页 >> 数学 >>

A-level 进阶数学真题 03年 纯数学



CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certi?cate of Education Advanced Level FURTHER MATHEMATICS Paper 1 May/June 2003 3 hours
Additional materials: Answer Booklet/Paper Graph paper List of Formulae (MF10)

9231/01

READ THESE INSTRUCTIONS FIRST If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction ?uid. Answer all the questions. Give non-exact numerical answers correct to 3 signi?cant ?gures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is speci?ed in the question. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The use of a calculator is expected, where appropriate. Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit. You are reminded of the need for clear presentation in your answers.

This document consists of 5 printed pages and 3 blank pages.
? CIE 2003

[Turn over

2 1

The diagram shows one loop of the curve whose polar equation is r = a sin 2θ , where a is a positive constant. Find the area of the loop, giving your answer in terms of a and π . [4] Prove by induction that, for all N ≥ 1,

2

∑ n(n + 1)2
n=1

N

n+2

n

=1?

1 . (N + 1)2N

[5]

3

Let v1 , v2 , v3 , . . . be a sequence and let

un = nvn ? (n + 1)vn+1 ,
for n = 1, 2, 3, . . . . Find

n=1

∑ un .

N

[2]

In each of the following cases determine whether the series u1 + u2 + u3 + . . . is convergent, and justify your conclusion. Give the sum to in?nity where this exists.
(i) vn = n 2 . (ii) vn = n 2 .
?3 ?1

[2] [2]

4

The curve C has equation y =

x2 ? 4 . x?3
[3]

(i) Find the equations of the asymptotes of C.

(ii) Draw a sketch of C and its asymptotes. Give the coordinates of the points of intersection of C with the coordinate axes. [4]

[You are not required to ?nd the coordinates of any turning points.]

9231/01/M/J/03

3 5

The equation 8x3 + 12x2 + 4x ? 1 = 0 has roots α , β , γ . Show that the equation with roots 2α + 1, 2β + 1, 2γ + 1 is

y3 ? y ? 1 = 0.
The sum (2α + 1)n + (2β + 1)n + (2γ + 1)n is denoted by Sn . Find the values of S3 and S?2 .
6

[3] [5]

Use de Moivre’s theorem to show that cos 6θ = 32 cos6 θ ? 48 cos4 θ + 18 cos2 θ ? 1. Hence solve the equation 64x6 ? 96x4 + 36x2 ? 1 = 0, giving each root in the form cos kπ . The variables x and y are related by the equation x4 + y4 = 1, where 0 < x < 1 and 0 < y < 1.
(i) Obtain an equation which relates x, y,

[5]

[4]

7

dy d2 y , , and deduce that dx dx2 [6]

d2 y 3x2 = ? . y7 dx2

(ii) Given that y = b1 when x = a1 and that y = b2 when x = a2 , where a1 < a2 , prove that the mean d3 y value of 3 with respect to x over the interval a1 ≤ x ≤ a2 is dx

3(a2 b7 ? a2 b7 ) 1 2 2 1

b7 b7 (a ? a1 ) 1 2 2

.

[4]

9231/01/M/J/03

[Turn over

4 8

The linear transformation T :

4



4

is represented by the matrix A, where ?1 ?1 ?2 ?3 ?2 ?1 ?3 ?5 3 11 ? ?. ? 14 ? 17 [7]

1 ?2 A=? ?3 ? 4

Find the rank of A and a basis for the null space of T.

1 ? ?2 ? ? is denoted by e. Show that there is a solution of the equation Ax = Ae of the form The vector ? ? ?1 ? ? ? ?1 p ?q? ?, where p and q are to be found. x=? [4] ?1? ? ? 1 The variables x and t, where x > 0 and 0 ≤ t ≤ 1 π , are related by 2 d2 x dx x 2 + dt dt
2

9

+ 5x

dx + 3x2 = 3 sin 2t + 15 cos 2t, dt

and the variables x and y are related by y = x2 . Show that d2 y dy + 5 + 6y = 6 sin 2t + 30 cos 2t. 2 dt dt Hence ?nd x in terms of t, given that x = 2 and 3 dx = ? when t = 0. dt 2 [3]

[10]

10

Find the acute angle between the planes with equations

x ? 2y + ? 9 = 0

and

x + y ? + 2 = 0.

[3]

The planes meet in the line l, and A is the point on l whose position vector is pi + qj + k.
(i) Find p and q. (ii) Find a vector equation for l.

[2] [3]

The non-coincident planes Π1 and Π2 are both perpendicular to l. The perpendicular distance from A √ √ to Π1 is 14 and the perpendicular distance from A to Π2 is also 14. Find equations for Π1 and Π2 in the form ax + by + c = d. [5]

9231/01/M/J/03

5 11

Answer only one of the following two alternatives.

EITHER

Given that

In =

1 0

xn e?α x dx,

where α is a positive constant and n is a non-negative integer, show that for n ≥ 1,

α In = nIn?1 ? e?α .

[3]

Hence, or otherwise, ?nd the coordinates of the centroid of the ?nite region bounded by the x-axis, the line x = 1 and the curve y = x e?x , giving your answers in terms of e. [11]

OR

The vector e is an eigenvector of each of the n × n matrices A and B, with corresponding eigenvalues λ and ? respectively. Prove that e is an eigenvector of the matrix AB with eigenvalue λ ? . [3] Find the eigenvalues and corresponding eigenvectors of the matrix C, where
C=

0 1 2

1 2 1

4 ?1 2

.

[8]

Verify that one of the eigenvectors of C is an eigenvector of the matrix D, where
D=

?3 0 0

1 ?2 0

1 4 ?4

.

[2]

Hence ?nd an eigenvalue of the matrix CD.

[1]

9231/01/M/J/03

6 BLANK PAGE

9231/01/M/J/03

7 BLANK PAGE

9231/01/M/J/03

8 BLANK PAGE

9231/01/M/J/03



更多相关文章:
湖南省_2003年_高考数学真题(理科数学)(附答案)_历年历...
湖南省_2003年_高考数学真题(理科数学)(附答案)_历年历届试题_高考_高中教育_...2 1 1 1 时,点 P 到椭圆两个焦点( ? ? a 2 , a), ( ? a 2 ,...
2003年数学建模A题
2003年数学建模A题_理学_高等教育_教育专区。数学建模2003 高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题 SARS 的传播 SARS(Se...
2003年高考数学(理科)真题及答案[全国卷I]
高考复习资料网 http://gaokao.examedu.cn 2003 年普通高等学校招生全国统一考试(全国卷) 数 理工农医类) 学(理工农医类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷...
2003年数学二考研试题与答案
2003 年考研数学(二)真题评注 年考研数学(一、填空题 填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) 填空题 1 2 (1) 若 ...
2003年高考数学试题及答案(江苏卷)
2003年高考数学试题及答案(江苏卷)_高三数学_数学_高中教育_教育专区。2003年...a 的图象与 x 轴有两上交点,则点(a,b)在 aOb 平面上的区 域(不包含...
2003年高考数学试题(全国理)及答案
2003年高考数学试题(全国理)及答案_高三数学_数学_高中教育_教育专区。2003年...学(理工农医类)答案 10.C 11.B 12.A 6.B 7.C 8.D 9.D 21 2 14...
2003年高考数学试题(江苏)及答案]
2003 年普通高等学校招生全国统一考试(江苏卷)数学试题 第Ⅰ卷(选择题共 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的...
2003年数学试题解析
2003 年考研数学(三)试题评注 年考研数学(一、填空题 填空题(本题共 6 小...3a 2 x0 + b = 0 , 2 2 b 2 = x0 (3a 2 ? x0 ) 2 = a 2...
2003年春季高考数学试题(北京理)及答案-2003年高考数学...
2003年高考数学试题(北京... 8页 免费 2004年春季高考试题——... 7页 免费...2 C ) ,则下列结论中正确的是( D ) 6.若 A,B,C 是△ABC 的三个内角...
2003年高考试题数学文科-(全国卷)
2003年高考试题数学文科-(全国卷)_高考_高中教育_教育专区。高考试卷大集合高考...= ( 1 高考试卷 新疆奎屯市一中 王新敞 A.0 B. π 4 C. π 2 D. ...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图