9512.net
甜梦文库
当前位置:首页 >> 数学 >>

二次函数



.已知函数 f ( x) ? x2 ? ax ? 3 ? a ,若 x ?? ?2,2? 时,有 f ( x) ? 2 恒成立,求 a 的取值范围.

【定理 1】 x1 ? 0 , x2 ? 0 (两个正根) ?

? 2 ? ? ? b ? 4ac ? 0 ? , b ? ? x1 ? x2 ? ? ? 0 a ? c ? x1 x2

? ? 0 ? a ?

推论: x1 ? 0 , x2 ? 0 ?

?? ? b 2 ? 4ac ? 0 ?? ? b 2 ? 4ac ? 0 ? 或? ?a ? 0 ?a ? 0 ? ? f ( 0 ) ? c ? 0 ? ? f (0) ? c ? 0 ? ? ?b ? 0 ?b ? 0

【例1】

若一元二次方程 (m ? 1) x 2 ? 2(m ? 1) x ? m ? 0 有两个正根,求 m 的取值范围。

? 2 ?? ? b ? 4ac ? 0 ? 【定理 2】 x1 ? 0 , x2 ? 0 ? ? x ? x ? ? b ? 0 , ? 1 2 a ? c ? x1 x 2 ? ? 0 ? a ?

推论: x1 ? 0 , x2 ? 0 ?

?? ? b 2 ? 4ac ? 0 ?? ? b 2 ? 4ac ? 0 ? 或? ?a ? 0 ?a ? 0 ? ? f ( 0 ) ? c ? 0 ? ? f (0) ? c ? 0 ? ? ?b ? 0 ?b ? 0

由二次函数图象易知它的正确性。
【例1】
2

若 一 元 二 次 方 程 kx ? 3kx ? k ? 3 ? 0 的两根都是负数,求 12 k 的取值范围。( k ? ? 或 k>3) 5

1

【定理 3】 x1 ? 0 ? x2 ?

c ?0 a

k 在何范围内取值,一元二次方程 kx 2 ? 3kx ? k ? 3 ? 0 有一个正根和一个负根? k ?3 分析:依题意有 <0=>0< k <3 k
【例2】

1 x1 ? 0 , x2 ? 0 ? c ? 0 且 定理 4】 ○

b ? 0; a b 2 x1 ? 0 , x2 ? 0 ? c ? 0 且 ? 0 。 ○ a

一元二次方程的非零分布—— k 分布
设一元二次方程 ax2 ? bx ? c ? 0 ( a ? 0 )的两实根为 x1 , x2 ,且 x1 ? x 2 。 k 为常数。 则一元二次方程根的 k 分布(即 x1 , x2 相对于 k 的位置)有以下若干定理。 【定理 1】 k ? x1 ? x2
? ?? ? b 2 ? 4ac ? 0 ? ?af (k ) ? 0 ? ? b ?? ?k ? 2a

【定理 2】 x1 ? x2 ? k

? ?? ? b 2 ? 4ac ? 0 。 ?? ?af (k ) ? 0 ? b ?? ?k ? 2a

2

【定理 3】 x1 ? k ? x2 ? af (k ) ? 0 。

推论 1 x1 ? 0 ? x2 ? ac ? 0 。 推论 2 x1 ? 1 ? x2 ? a(a ? b ? c) ? 0 。 【定理 4】有且仅有 k1 ? x1 (或 x2 ) ? k 2 ? f (k1 ) f (k 2 ) ? 0

?a ? 0 ?a ? 0 ? f (k ) ? 0 ? f (k ) ? 0 1 1 ? ? ? ? 【定理 5】 k1 ? x1 ? k 2 ? p1 ? x2 ? p2 ? ? f (k 2 ) ? 0 或 ? f (k 2 ) ? 0 ?f (p ) ? 0 ?f (p ) ? 0 1 1 ? ? ? ? f ( p2 ) ? 0 ? ? f ( p2 ) ? 0 此定理可直接由定理 4 推出,请读者自证。

? ? ?? ? b 2 ? 4ac ? 0 ?? ? b 2 ? 4ac ? 0 ? ? ?a ? 0 ?a ? 0 ? ? 【定理 6】 k1 ? x1 ? x2 ? k 2 ? ? f (k1 ) ? 0 或 ? f (k1 ) ? 0 ? f (k ) ? 0 ? f (k ) ? 0 2 2 ? ? b b ? ? k1 ? ? ? k2 k1 ? ? ? k2 ? ? 2a 2a ? ?

3

【例2】

( 1 ) 已知方程 x 2 ? 11x ? m ? 2 ? 0 的两实根都大于 1 ,求 m 的取值范围。 ( 12 ? m ? 129 )
4

( 2 ) 若 一 元 二 次 方 程 mx2 ? (m ? 1) x ? 3 ? 0 的 两 个 实 根 都 大 于 -1 , 求 m 的 取 值 范 围 。 ( m ? ?2或m ? 5 ? 2 6 )

( 3 ) 若 一 元 二 次 方 程 mx2 ? (m ? 1) x ? 3 ? 0 的 两 实 根 都 小 于 2 , 求 m 的 取 值 范 围 。 (
1 m ? ? 或m ? 5 ? 2 6 2



4

已知二次函数 f (x) = a x 2 + bx(a、b 为常数,且 a ≠ 0),满足条件 f (1 + x) = f (1-x),且 方程 f (x) = x 有等根.求 f (x) 的解析式

变式 1:已知函数 f (x) = lg (a x 2 + 2x + 1) . (I)若函数 f (x) 的定义域为 R,求实数 a 的取值范围; (II)若函数 f (x) 的值域为 R,求实数 a 的取值范围.

5



更多相关文章:
初三数学二次函数知识点总结
初三数学二次函数知识点总结_数学_初中教育_教育专区。初三数学 二次函数 知识点总结一、二次函数概念: a b c 1. 二次函数的概念: 一般地, 形如 y ? ax...
二次函数知识点、考点、典型试题集锦(带详细解析答案)
二次函数知识点、考点、典型试题集锦(带详细解析答案)_初三数学_数学_初中教育_教育专区。黄冈中学用的,二次函数知识点、考点、典型试题集锦(带详细解析答案),超级...
二次函数知识点总结
二次函数知识点总结_初三理化生_理化生_初中教育_教育专区。初中数学教案 厦门分校二次函数知识点 一、二次函数概念: 一切为了孩子美好的未来 b c 1.二次函数...
一元二次函数中考试题选编
一元二次函数中考试题选编_初三数学_数学_初中教育_教育专区。一元二次函数中考试题选编,一元二次函数练习题,备战2013中考一元二次函数综合练习题 2 1、二次函数...
二次函数(最全的中考二次函数知识点总结)
二次函数(最全的中考二次函数知识点总结)。二次函数知识点和典型习题二次函数知识点总结及相关典型题目第一部分 二次函数基础知识 ? 相关概念及定义 b c ? 二...
初中数学中考复习专题——二次函数
第一课时 二次函数阅读思考桥梁的纵截面、投出去的篮球的路线轨迹都是抛物线,从数学的角度看,它们都二次函 数的图像。 课前练习 1. 下列函数中,不是二次函数...
二次函数的应用(实际问题)
再利 用函数图象得出:图象过(7,10049) ,(12,10144)点,求出二次函数解析式即可。 (2)利用当 1≤x≤6 时,以及当 7≤x≤12 时,分别求出处理污水的费用,...
二次函数的概念及一般形式习题
二次函数的概念及一般形式习题_数学_初中教育_教育专区。二次函数讲义知识点一 二次函数的概念 我们把形如 y ? ax2 ? bx ? c (其中a、b、c为常数, a ...
初三数学二次函数知识点总结
初三数学二次函数知识点总结_数学_初中教育_教育专区。初三数学 二次函数 知识点总结一、二次函数概念: 1. 二次函数的概念: 一般地, 形如 y ? ax2 ? bx ...
二次函数基础课时练习题(含答案)
其中是二次函数的是 3、当 m 时,函数 y = (m - 2)x 2 + 3x - 5 ( m 为常数)是关于 x 的二次函数 2 4、当 m = _ _ _ _ 时,函数 y =...
更多相关标签:
二次函数顶点坐标公式    二次函数y=ax2+bx+c    二次函数的图像和性质    一次函数    二次函数的中考题    二次函数练习题    失踪的正方形    二次函数顶点式    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图