9512.net
甜梦文库
当前位置:首页 >> 高三数学 >>

2008届高考数学概念方法题型易误点技巧总结(十三)导数


概念、方法、题型、易误点 概念、方法、题型、易误点及应试技巧总结十三.导 数
(2)瞬时速度; (3)边际成本。 1、导数的背景: 导数的背景 (1)切线的斜率; 如一物体的运动方程是 s = 1 ? t + t 2 ,其中 s 的单位是米, t 的单位是秒,那么物体在 t = 3 时的 瞬时速度为_____(答:5 米/秒) 2、导函数的概念:如果函数 f ( x) 在开区间(a,b)内可导,对于开区间(a,b)内的每一个 x0 , 导函数的概念 都对应着一个导数 f ′ ( x0 ) , 这样 f ( x) 在开区间 a,b) ( 内构成一个新的函数, 这一新的函数叫做 f ( x) 在开区间(a,b)内的导函数, 记作 f ′ ( x ) = y′ = lim 数。 处的导数的步骤 步骤: ( 3、求 y = f ( x) 在 x0 处的导数的步骤 (1)求函数的改变量 ?y = f ( x0 + ?x ) ? f ( x0 ) ; 2)求平均
?y f ( x0 + ?x ) ? f ( x0 ) ?y = ; 3)取极限,得导数 f ′ ( x0 ) = lim ( 。 x → 0 ?x ?x x

f ( x + ?x ) ? f ( x ) ?y = lim ,导函数也简称为导 ?x → 0 ?x ?x → 0 ?x

变化率

导数的几何意义: 就是曲线 y = f ( x) 在点 P ( x0, f ( x0 ) ) 4、 导数的几何意义 函数 f ( x) 在点 x0 处的导数的几何意义, 处的切线的斜率,即曲线 y = f ( x) 在点 P ( x0, f ( x0 ) ) 处的切线的斜率是 f ′ ( x0 ) ,相应地切线的方程是

y ? y0 = f ′ ( x0 )( x ? x0 ) 。特别提醒 特别提醒 特别提醒:
在求曲线的切线方程时, 要注意区分所求切线是曲线上某点处的切线, 区分所求切线是曲线上某点处的切线, 还是过某点的切线: ( 1) 区分所求切线是曲线上某点处的切线 还是过某点的切线 曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有 一条; (2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只有当此点 在曲线上时,此点处的切线的斜率才是 f ′( x0 ) 。

概念、方法、题型、易误点及应试技巧总结十三. 概念、方法、题型、易误点及应试技巧总结十三.导 数 十三
第 1 页 共 5 页

( P 如 1) 在曲线 y = x 3 ? x +

π 3π [0, ) U [ , π ) ) ; 2 4

2 上移动, 在点 P 处的切线的倾斜角为α, 则α的取值范围是______ (答: 3

; (2)直线 y = 3 x + 1 是曲线 y = x 3 ? a 的一条切线,则实数 a 的值为_______(答:-3 或 1)
1 2 π x + m ( m 为常数)图象上 A 处的切线与 x ? y + 3 = 0 的夹角为 , 2 4 1 ; 则 A 点的横坐标为_____(答:0 或 ) 6

(3)已知函数 f ( x) = 2 x 3 ?

; (4)曲线 y = x 3 + x + 1 在点 (1,3) 处的切线方程是______________(答: 4 x ? y ? 1 = 0 )
2 (5)已知函数 f ( x) = ? x 3 + ax 2 + 4 x ,又导函数 y = f ' ( x) 的图象与 x 轴交于 (?k , 0), (2k , 0), k > 0 。 3 35 ①求 a 的值;②求过点 (0,0) 的曲线 y = f ( x) 的切线方程(答:①1;② y = 4 x 或 y = x) 。 8

导数的运算法则: 常数函数的导数为 0, C′ = 0(C 为常数) (2)( x n ) ′ = nx n ?1 ( n ∈ Q ) , 即 ; 5、 导数的运算法则 (1)
1 ?1? 与 此 有 关 的 如 下 : ? ? = ( x ?1 ) ′ = ? 2 , x ? x?


( )

? 1? 1 x ′ = ? x2 ? = ; 3 ) 若 f ( x), g ( x) 有 导 数 , 则 ( ? ? 2 x



① [ f ( x) ± g ( x)]′ = f ′( x) ± g ′( x) ;② [C f ( x)]′ = Cf ′( x) 。 如(1)已知函数 f ( x) = mx m? n 的导数为 f ′( x) = 8 x 3 ,则 m n = _____(答:
1 ) ; 4

; ( 2 ) 函数 y = ( x ? 1)( x + 1) 2 的导数为 __________ (答: y′ = 3 x 2 + 2 x ? 1 ) ( 3 ) 若对任意 x ∈ R ,

f ′( x) = 4 x3 , f (1) = ?1 ,则 f ( x) 是______(答: f ( x) = x 4 ? 2 )
6、多项式函数的单调性: 多项式函数的单调性: (1)多项式函数的导数与函数的单调性: 多项式函数的导数与函数的单调性 ①若 f ′( x) > 0 ,则 f ( x) 为增函数;若 f ′( x) < 0 ,则 f ( x) 为减函数;若 f ′( x) = 0 恒成立,则 f ( x) 为 常数函数;若 f ′( x) 的符号不确定,则 f ( x) 不是单调函数。 反之等号不成立;若函数 y = f ( x) ②若函数 y = f ( x) 在区间( a, b )上单调递增,则 f ′( x) ≥ 0 ,反之等号不成立 反之等号不成立 在区间( a, b )上单调递减,则 f ′( x) ≤ 0 ,反之等号不成立 反之等号不成立。 反之等号不成立

概念、方法、题型、易误点及应试技巧总结十三. 概念、方法、题型、易误点及应试技巧总结十三.导 数 十三
第 2 页 共 5 页

如(1)函数 f ( x) = x 3 + ax 2 + bx + c ,其中 a, b, c 为实数,当 a 2 ? 3b < 0 时, f ( x) 的单调性是______ (答:增函数) ; 设 则实数 a 的取值范围______ (答:0 < a ≤ 3 ) ; (2) a > 0 函数 f ( x) = x 3 ? ax 在 [1,+∞) 上单调函数, (3)已知函数 f ( x) = ? x 3 + bx(b 为常数)在区间 (0,1) 上单调递增,且方程 f ( x) = 0 的根都在区间
[?2,2] 内,则 b 的取值范围是____________(答: [3, 4] ) ;

已知 f ( x) = x 2 + 1 ,g ( x) = x 4 + 2 x 2 + 2 , ? ( x) = g ( x) ? λf ( x) , 设 试问是否存在实数 λ , ? (x) 使 ( 4) 在 (?∞,?1) 上是减函数,并且在 (?1,0) 上是增函数?(答: λ = 4 ) ( 2) 利用导数求函数单调区间的步骤: 1) f ′( x) ; 2) 利用导数求函数单调区间的步骤 ( 求 ( 求方程 f ′( x) = 0 的根, 设根为 x1 , x2 ,L xn ; (3) x1 , x2 ,L xn 将给定区间分成 n+1 个子区间,再在每一个子区间内判断 f ′( x) 的符号,由此确定每 一子区间的单调性。 (答: 如设函数 f ( x) = ax 3 + bx 2 + cx 在 x = ?1,1 处有极值,且 f (?2) = 2 ,求 f (x) 的单调区间。 递增区间(-1,1) ,递减区间 ( ?∞, ?1) , (1, +∞) ) 7、函数的极值: 函数的极值 (1)定义:设函数 f ( x) 在点 x0 附近有定义,如果对 x0 附近所有的点,都有 f ( x) < f ( x0 ) ,就说 定义 是 f ( x0 ) 函数 f ( x) 的一个极大值。记作 y极大值 = f ( x0 ) ,如果对 x0 附近所有的点,都有 f ( x) > f ( x0 ) , 就说是 f ( x0 ) 函数 f ( x) 的一个极小值。记作 y极小值 = f ( x0 ) 。极大值和极小值统称为极值。 在某个区间上的极值的步骤: (2)求函数 y = f ( x) 在某个区间上的极值的步骤 (i)求导数 f ′( x) ; (ii)求方程 f ′( x) = 0 的根 x0 ; (iii)检查 f ′( x) 在方程 f ′( x) = 0 的根 x0 的左右的符号: “左正右负” ? f ( x) 在 x0 处取极大值; “左负右正” ? f ( x) 在 x0 处取极小值。 特别提醒 特别提醒: 提醒 (1) x0 是极值点的充要条件是 x0 点两侧导数异号,而不仅是 f ′ ( x0 ) =0, f ′ ( x0 ) =0 是 x0 为极
概念、方法、题型、易误点及应试技巧总结十三. 概念、方法、题型、易误点及应试技巧总结十三.导 数 十三
第 3 页 共 5 页

值点的必要而不充分条件。 (2)给出函数极大(小)值的条件,一定要既考虑 f ′( x0 ) = 0 ,又要考虑检验“左正右负”(“左 负右正”)的转化,否则条件没有用完,这一点一定要切记! 如(1)函数 y = ( x 2 ? 1) 3 + 1 的极值点是 点 x = 0 D、极小值点 x = 1 (答:C) ; (2)已知函数 f ( x) = x 3 + ax 2 + (a + 6) x + 1 有极大值和极小值,则实数 a 的取值范围是_____(答:
a > 6 或 a < ?3 ) ;

A、极大值点 x = ?1

B、极大值点 x = 0

C、极小值

; (3)函数 f ( x ) = x3 + ax 2 + bx + a 2在x = 1 处有极小值 10,则 a+b 的值为____(答:-7) (4)已知函数 f ( x) = x 3 + bx 2 + cx + d 在区间[-1,2 ]上是减函数,那么 b+c 有最___值___(答: 大, ?
15 ) 2

8、函数的最大值和最小值 函数的最大值和最小值: 最大值和最小值 (1)定义:函数 f ( x) 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最 定义: 大值” ;函数 f ( x) 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值” 。 上的最大值与最小值的步骤: ( 2 ) 求函数 y = f ( x) 在 [ a, b ] 上的最大值与最小值的步骤 ( 1 )求函数
y = f ( x) 在 a, b ) ( 内的极值 (极大值或极小值) 2) y = f ( x) 的各极值与 f (a ) , ; 将 ( f (b) 比较,其中最大的一个为最大值,最小的一个为最小值。
O

y

y = f ′( x)

a

b

x

; 如(1)函数 y = 2 x 3 ? 3 x 2 ? 12 x + 5 在[0,3]上的最大值、最小值分别是______(答:5; ? 15 ) 如果所制作容器的底面的一边比另一边长 (2)用总长 14.8m 的钢条制作一个长方体容器的框架,
0.5m。那么高为多少时容器的容积最大?并求出它的最大容积。 (答:高为 1.2 米时,容积最大为 9 3 cm ) 5

特别注意: 1)利用导数研究函数的单调性与最值(极值)时,要注意列表! 2)要善于应用 特别注意 ( ( 函数的导数, 考察函数单调性、 最值(极值), 研究函数的性态, 数形结合解决方程不等式等相关问题。

概念、方法、题型、易误点及应试技巧总结十三. 概念、方法、题型、易误点及应试技巧总结十三.导 数 十三
第 4 页 共 5 页

y

y

y

y

O

a A、

b

x

O

a B、

b

x

O

a C、

b

x

O

a D、

b

x

如 ( 1 ) f ′( x) 是 f ( x) 的 导 函 数 , f ′( x) 的 图 象 如 右 图 所 示 , 则 f ( x) 的 图 象 只 可 能 是
( 答:D )

方程 x 3 ? 6 x 2 + 9 x ? 10 = 0 的实根的个数为______ (答: ) 3) 1 ; ) (2) ) ( 已知函数 f ( x) = x 3 ? ax 2 ? x , 抛物线 C : x 2 = y , x ∈ (1,2) 时, 当 函数 f ( x) 的图象在抛物线 C : x 2 = y 的上方, a 的取值范围 求 (答:
a ≤ ?1 ) 。

概念、方法、题型、易误点及应试技巧总结十三. 概念、方法、题型、易误点及应试技巧总结十三.导 数 十三
第 5 页 共 5 页


赞助商链接

更多相关文章:
2008届高考数学概念方法题型易误点技巧总结(一)
2008 届高考数学概念方法题型易误点技巧总结(一)集合与简易逻辑 届高考数学概念方法题型易误点技巧总结( 基本概念, 公式及方法是数学解题的基础工具和基本技能, 为此...
2008届高考数学概念方法题型易误点技巧总结(三)数列
1} 是等比数列;②令 8 8 8 处的导数 h ′( ) ,并比较 h ′( ) 与...常选用 (2)利率问题: 9 2008 届高考数学概念方法题型易误点技巧总结(三)数 ...
2008届高考数学概念方法题型易误点技巧总结(五)
2008 届高考数学概念方法题型易误点技巧总结(五) 届高考数学概念方法题型易误点技巧总结( 平面向量向量有关概念: 1,向量有关概念 (1)向量的概念 向量的概念:既有...
2008届高考数学概念方法题型易误点技巧总结(一)(集合与...
2008届高考数学概念方法题型易误点技巧总结(一)(集合与建议逻辑) 2008届高考数学概念方法题型易误点技巧总结2008届高考数学概念方法题型易误点技巧总结隐藏>> 2008 届...
2008届高考数学概念方法题型易误点技巧总结(四)
2008 届高考数学概念方法题型易误点技巧总结(四) 届高考数学概念方法题型易误点技巧总结( 三角函数角的概念的推广: 1, 角的概念的推广 平面内一条射线绕着端点从...
2008届高考数学概念方法题型易误点技巧总结(三)(数列)
2008届高考数学概念方法题型易误点技巧总结2008届高考数学概念方法题型易误点技巧总结...(a2 1) x 2 8 8 8 2 处的导数 h ′( ) ,并比较 h ′( ) 与 2n...
2008届高考数学概念方法题型易误点技巧总结(二)
2008 届高考数学概念方法题型易误点技巧总结(二)函 届高考数学概念方法题型易误点...(取值――作差――变形――定号),导数法(在区间 (a, b) 内, 若总有 f...
2009届高考数学概念方法题型易误点技巧总结学生用13
易错易误易错易误隐藏>> 概念方法题型易误点及应试技巧总结(十三) 概念方法题型易误点及应试技巧总结(十三) 导数(2)瞬时速度; (3)边际成本。 如...
2008届高考数学概念方法题型易误点技巧总结(四)(三角函数)
2008 届高考数学概念方法题型易误点技巧总结 三角函数 1、 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成...
高考数学概念方法题型易误点技巧总结:数列
2008届高考数学概念方法题... 3页 2财富值喜欢...高考数学概念方法题型易误点技巧总结:数列高考数学概念...( ) 3 处的导数 3 , 3 与 2n 2 n 的大小....
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图