9512.net
甜梦文库
当前位置:首页 >> 数学 >>

高中数学复习试题(完整版)



22

§1.1 集合
重难点: 重难点: (1)集合的含义及表示. (2)集合的基本关系 (3)集合的基本运算 2 经典例题:1.若 经典例题:1. x∈R,则{3,x,x -2x}中的元素 x 应满足什么条件? 2.已知 A={x|x=8m+14n,m、n∈Z} B={x|x=2k,k∈Z} , ,问: (1)数 2 与集合 A 的关系如何? (

2)集合 A 与集合 B 的关系如何? 3.已知集合 A= { x 基础训练: 基础训练: 1.下面给出的四类对象中,构成集合的是( A.某班个子较高的同学 B.长寿的人 ) D.倒数等于它本身的数 2.对于集合 A={2,
x ?x=0 ,
2

}

B= { x

ax ? 2 x + 4 = 0 , 且
2

}

A ∩ B=B,求实数 a 的取值范围.

C. 2 的近似值

4,6},若 a ∈ A,则 6-a ∈ A,那么 a 的值是__________. 3. 平面直角坐标系内所有第二象限的点组成的集合是( A. {x,y 且 x < 0, y > 0 } C. {(x,y) x < 0, y > 0 } 4.用适当的符合填空:
0__________{0} ,

)

B. {(x,y) x < 0, y > 0 } D. {x,y 且 x < 0, y > 0 }

a__________{a} ,

π

________Q ,

1 2

________Z , - 1________R , }

0________N ,

0

Φ .{a}_______{a,b,c}.{a}_________{{a},{b},{c}}, Φ _______{a,b
5.由所有偶数组成的集合可表示为{ x x = 6.用列举法表示集合 D={ ( x , y ) y = ? x + 8, x ∈ N , y ∈ N }为
2

}. .

7.已知集合 A={ x ax + 2 x + 1 = 0, a ∈ R , x ∈ R }.
2

(1)若 A 中只有一个元素,求 a 的值; 8.设 U 为全集,集合 M、N A. CU M

(2)若 A 中至多有一个元素,求 a 的取值范围. )

U,且 M ? N,则下列各式成立的是(
B. CU M ? M D. CU M ? N
2

? CU N

C. CU M ? CU N

9. 已知全集 U={x|-2≤x≤1},A={x|-2<x<1 =,B={x|x +x-2=0},C={x|-2≤x<1 =,则 ( ) B.C ? CuA D. CuA=B )

A.C ? A C.CuB=C

10.已知全集 U={0,1,2,3}且 CUA={2},则集合 A 的真子集共有(
第 1 页 共 22 页

22

A.3 个
2

B.5 个

C.8 个
2

D.7 个

11.如果 M={x|x=a +1,a ∈ N*},P={y|y=b -2b+2,b ∈ N+},则 M 和 P 的关系为 M_________P. 12.集合 A={x|x +x-6=0},B={x|mx+1=0},若 B A,则实数 m 的值是 13.判断下列集合之间的关系: (1)A={三角形},B={等腰三角形},C={等边三角形}; (2)A={ x | x 2 ? x ? 2 = 0 },B={ x | ?1 ≤ x ≤ 2 },C={ x | x 2 + 4 = 4 x }; (3)A={ x | 1 ≤ x ≤ 1010 },B={ x | x = t 2 + 1, t ∈ R },C={ x | 2 x + 1 ≥ 3 }; (4) A = { x | x =
k 2 + 1 4 , k ∈ Z }, B = { x | x = k 4 + 1 2 , k ∈ Z }.
2



1.已知集合 M

=

{x x

2

+ px + 2 = 0 , N =

}

{x x

2

? x ? q = 0 , 且M ∩ N = {2} ,则

}

p, q 的值为 (

) .

A. p = ?3, q = ?2

B. p = ?3, q = 2

C. p = 3, q = ?2

D. p = 3, q = 2 ) .

( , ( ,则满足 C ? A∩B 的集合 C 的个数是( 2.设集合 A={ x,y)|4x+y=6} B={ x,y)|3x+2y=7} A.0 B.1 C.2 D.3

3.已知集合 A = { x | ?3 ≤ x ≤ 5},B = { x | a + 1 ≤ x ≤ 4 a + 1}, A ∩ B = B , 且 ) . B ≠ φ ,则实数 a 的取值范围是( A. a ≤ 1 B. 0 ≤ a ≤ 1
C. a ≤ 0 D. ? 4 ≤ a ≤ 1

4.设全集 U=R,集合 M = { x f ( x ) = 0} , N = { x g ( x ) = 0} , 则方程 A. M B. M ∩(CuN)

f ( x) g ( x)

= 0 的解集是(

) .

C. M ∪(CUN)

D. M ∪ N

5.有关集合的性质:(1) Cu (A ∩ B)=( CuA)∪(Cu B); (2) Cu (A ∪ B)=( Cu A) ∩ (Cu B) (3) A ∪ (Cu A)=U A.1 (4) A ∩ (Cu A)= Φ B. 2 C.3 其中正确的个数有( D.4 . )个.

6.已知集合 M={x|-1≤x<2=,N={x|x—a≤0} ,若 M∩N≠ Φ ,则 a 的取值范围是 7.已知集合 A={x|y=x -2x-2,x∈R} B={y|y=x -2x+2,x∈R} , ,则 A∩B= 8.表示图形中的阴影部分 . A B
2 2

C 9.集合 U,M,N,P 如图所示,则图中阴影部分所表示的集合是( ) U (A)M∩(N∪P) (B)M∩CU(N∪P) P (C)M∪CU(N∩P) (D)M∪CU(N∪P) M

N

第 2 页 共 22 页

22

10.在直角坐标系中,已知点集 A= (CuA) ∩ B= 11.已知集合 M= {2, a + 2, a 12.已知集合 A= { x ∈ R
2 2

{

( x, y )

y?2 x ?1

=2

}
2

,B= {( x , y )

y = 2 x} ,则


? 4 , N = a + 3, a + 2, a ? 4 a + 6 , 且M ∩ N = {2} ,求实数
2

}

{

}

a 的的值

x + 4x = 0

} ,B= { x ∈ R

x + 2( a + 1) x + a ? 1 = 0
2 2

} ,且 A∪B=A,试求 a 的取值范围.

§1.2 函数与基本初等函数
重难点: (1)函数(定义域、值域、单调性、奇偶性、最大值、最小值) 重难点: (2)基本初等函数(指数函数、对数函数、幂函数) ,求下列函数的定义域 (函数基本性质)典型例题:1.设函数 f(x)的定义域为[0,1] 函数基本性质)典型例题:1. 2 (1)H(x)=f(x +1) ; ( (2)G(x)=f(x+m)+f(x-m) m>0). 2.已知函数 f(x)=2x -mx+3,当 x ∈ ( ?2, +∞ ) 时是增函数,当 x ∈ ( ?∞, ?2 ) 时是减函数,则 f(1)等于 ( ) A.-3 B.13 C.7 D.含有 m 的变量
2

基础训练: 基础训练: 1. 下列四组函数中,表示同一函数的是( A. f ( x ) = x , g ( x ) = C. f ( x ) =
x ?1
2


2

x

2

B. f ( x ) = x , g ( x ) = ( x ) D. f ( x ) =
x +1 ?

x ?1

, g ( x) = x + 1

x ? 1, g ( x ) =

x ?1
2

2.函数 y = f ( x ) 的图象与直线 x = a 交点的个数为( A.必有一个 B.1 个或 2 个
1 x +1

) D.可能 2 个以上 ) D. { x x ≠ 1, ?2}

C.至多一个

3.已知函数 f ( x ) = A. { x x ≠ 1} 4.函数 f ( x ) =
5

,则函数 f [ f ( x )] 的定义域是( C. { x x ≠ ?1, ?2} )
4 3

B. { x x ≠ ?2}
1 1 ? x (1 ? x )

的值域是(
5 4

A. [ , +∞ )
4

B. ( ?∞, ]
+

C. [ , +∞ )

D. ( ?∞, ]
3

4

5.函数 f ( x ) 对任何 x ∈ R 恒有 f ( x1 ? x2 ) = f ( x1 ) + f ( x2 ) ,已知 f (8) = 3 ,则 f ( 2 ) = . + 6.规定记号“ ? ”表示一种运算,即 a ? b = a b + a + b ,、 ∈ R . 若 1 ? k = 3 ,则函数 f ( x ) = k ? x 的值域是 a b ___________. 7.求函数 y = x ? 3 x ? 2 的值域.

第 3 页 共 22 页

22

8. 求下列函数的定义域 : f ( x ) =
2?
2

x 1 x ?1

9.已知 f(x)=x +4x+3,求 f(x)在区间[t,t+1]上的最小值 g(t)和最大值 h(t). 10.函数 f ( x ) =
1+ x + x ?1
2

是(



1+ x + x +1
2

A. 非奇非偶函数 B.既不是奇函数,又不是偶函数奇函数 C. 偶函数 D. 奇函数 11.奇函数 y=f(x) x≠0) ( ,当 x∈(0,+∞)时,f(x)=x-1,则函数 f(x-1)的图象为





12.函数 f ( x ) = ?2 x 2 + 4tx + t 在区间[0, 1]上的最大值 g(t)是 13. 已知函数 f(x)在区间 (0, +∞) 上是减函数,则 f ( x 2 + x + 1) 与
f ( ) 的大小关系是


3 4



14.如果函数 y=f(x+1)是偶函数,那么函数 y=f(x)的图象关于_________对称
x + 2x +
2

1 2 ,其中 x ∈ [1, +∞ ) ,(1)试判断它的单调性;(2)试求它的最小值.

15. 已知函数 f ( x ) =

x

16.已知映射 f:A → B,其中集合 A={-3,-2,-1,1,2,3,4},集合 B 中的元素都是 A 中元素在映射 f 下的象, 基础训练: 基础训练: (指数函数)经典例题:求函数 y=3 ? x 指数函数)经典例题:
1
?

2

+ 2 x+3

的单调区间和值域

1

1.数 a = ( ) 4 , b = ( ) 6 , c = ( ) 8 的大小关系是(
2 3 5

1

?

1

1

?

1

) D. c < b < a ) x -x D.y=4 +4 )

A. a < b < c B. b < a < c C. c < a < b x 2.下列函数中,图象与函数 y=4 的图象关于 y 轴对称的是( x -x -x A.y=-4 B.y=4 C.y=-4

3.把函数 y=f(x)的图象向左、向下分别平移 2 个单位长度,得到函数 y = 2 x 的图象,则( A.
f ( x) = 2
x?2

+2

B.
?x

f ( x) = 2

x?2

?2

C.

f ( x) = 2

x+2

+2

D. )

f ( x) = 2

x+2

?2

4.设函数

f ( x ) = a ( a > 0, a ≠ 1) ,f(2)=4,则(
B.f(-1)>f(-2)
m?n 2

A.f(-2)>f(-1)

C.f(1)>f(2)

D.f(-2)>f(2)

5.设

x+

x ? 1 = a 2 mn

,求 x ?

x ?1 =
2

. .

x ?1 6.函数 f ( x ) = a ? 1( a > 0, a ≠ 1) 的图象恒过定点

第 4 页 共 22 页

22

7.(1)已知 x ∈ [-3,2],求 f(x)= (2)已知函数

1 4
x

?

1 2
x

+ 1 的最小值与最大值.

f ( x) = a

x ?3 x + 3

2

在[0,2]上有最大值 8,求正数 a 的值.

8.求下列函数的单调区间及值域: (1) f ( x ) = ( )
3 2
x ( x +1)



(2) y =

1? 2 4
x

x



(3)求函数 f ( x ) = 2

?

x +3 x +2

2

的递增区间.

基础训练: 基础训练: (对数函数)经典例题:已知 f(logax)= 数函数)经典例题:
a ( x ? 1)
2

x ( a ? 1)
2

,其中 a>0,且 a≠1.

(1)求 f(x) (2)求证:f(x)是奇函数; (3)求证:f(x)在 R 上为增函数. ; 1.若 lg 2 = a , lg 3 = b ,则 lg 0.18 = ( ) A. 2 a + b ? 2 2.函数 y =
2

B. a + 2b ? 2
lg( ?3 x + 6 x + 7) 的值域是(

C. 3a ? b ? 2 ) C.[0, +∞ ) )

D. a + 3b ? 1

A. [1 ? 3,1 + 3] 3.设函数 f ( x ) = ? A. (-1,1) 4.已知函数 f(x)= ? A.9
x

B.[0,1]

D.{0}

?x2 , x ≤ 0 ?lg( x + 1), x > 0

, 若f ( x0 ) > 1, 则x0 的取值范围为(

B. (-1,+∞)

C. ( ?∞, 9)
1 4

D. ( ?∞, ?1) U (9, +∞ ) ) D.-
1 9

?log 2 x ( x > 0) ?3 ( x ≤ 0)
B.
1 9

,则 f[f(

) ]的值是(

C.-9 .

5.计算 log 2008 [log 3 (log 2

8)] =

6.函数 f(x)的定义域为[0,1],则函数 f [log 3 (3 ? x )] 的定义域为 基础训练: 基础训练: 幂函数)经典例题: (幂函数)经典例题:比较下列各组数的大小: (1)1.5 ,1.7 ,1;
1 2



1 3

1 3

(2) (-

2 2



?

2 3

, (-

10 7

) ,1.1

2 3

?

4 3



1.函数 y=(x -2x) A.{x|x≠0 或 x≠2}
2

2



的定义域是(

) ) D. (0,2)

B. (-∞,0) U (2,+∞) C. (-∞,0) U [2,+∞ ) C. [0,+∞ ]
n

2.函数 y= x 5 的单调递减区间为( A. (-∞,1)

B. (-∞,0)
m

D. (-∞,+∞)

3.如图,曲线 c1, c2 分别是函数 y=x 和 y=x 在第一象限的图象, 那么一定有( ) A.n<m<0 B.m<n<0 C.m>n>0
第 5 页 共 22 页

y c1
D.n>m>0

c2 x

0

22

4.幂函数的图象过点(2,

1 4

), 则它的单调递增区间是



5.设 x∈(0, 1),幂函数 y=

x

a

的图象在 y=x 的上方,则 a 的取值范围是



§1.3 函数的应用
重难点: (1)函数与方程(零点与一元二次方程根存在性的关系,了解二分法) 重难点: (2)函数模型及其应用(指数函数、对数函数、幂函数、分段函数的增长特点) (函数与方程)经典例题:研究方程|x -2x-3|=a(a≥0)的不同实根的个数. 函数与方程)经典例题: 2 1.如果抛物线 f(x)= x +bx+c 的图象与 x 轴交于两点(-1,0)和(3,0),则 f(x)>0 的解集是( A. (-1,3) B.[-1,3] C. ( ?∞, ?1) ∪ (3, +∞ ) D. ( ?∞, ?1] ∪ [3, +∞ )
2



2.某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是 1.10 元;如果自己生产,则每月的固 定成本将增加 800 元,并且生产每个配件的材料和劳力需 0.60 元,则决定此配件外购或自产的转折点是( ) 件(即生产多少件以上自产合算) A.1000 B.1200 C.1400 D.1600 2 3.某产品的总成本 y(万元)与产量 x(台)之间的函数关系式是 y=3000+20x-0.1x (0<x<240,x∈N) ,若每 台产品的售价为 25 万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ) A.100 台 B.120 台 C.150 台 D.180 台

第 6 页 共 22 页

22

§2.1 空间几何体
重难点: (1)空间几何体的结构 重难点:
(2 ) 空间几何体的三视图和直观图 (3)空间几何体的表面积和体积

典型例题: 典型例题:半径为 R 的半圆卷成一个圆锥,则它的体积为(
3 π R3 24 3 π R3 8 5 π R3 24 5 π R3 8



A.

B.

C.

D.

基础训练: 基础训练:
一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对

主视图

左视图 )

俯视图

2.下图是由哪个平面图形旋转得到的(

A

B )

C

D

3.棱长都是 1 的三棱锥的表面积为( A.

3

B. 2 3

C. 3 3

D. 4 3

4.长方体的一个顶点上三条棱长分别是 3, 4, 5 ,且它的 8 个顶点都在 同一球面上,则这个球的表面积是( ) A. 25π B. 50π C. 125π D.都不对 5.正方体的内切球和外接球的半径之比为( )

A. 3 :1

B. 3 : 2

C. 2 : 3

D. 3 : 3

6.在△ABC 中, AB = 2, BC = 1.5, ∠ABC = 1200 ,若使绕直线 BC 旋转一周,

第 7 页 共 22 页

22

则所形成的几何体的体积是(



A.

9 π 2

B.

7 π 2

C.

5 π 2

D.

3 π 2

7.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长 ) 分别是 9 和 15 ,则这个棱柱的侧面积是( A. 130 B. 140 C. 150 D. 160

二、填空题
1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 顶点最少的一个棱台有 ________条侧棱。 ________个顶点,

2.若三个球的表面积之比是 1: 2 : 3 ,则它们的体积之比是_____________。 3.正方体 ABCD ? A1 B1C1 D1 中, O 是上底面 ABCD 中心,若正方体的棱长为 a , 则三棱锥 O ? AB1 D1 的体积为_____________。 4.如图, E , F 分别为正方体的面 ADD1 A1 、面 BCC1 B1 的中心,则四边形

BFD1 E 在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是 2 、 3 、 6 ,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别 为 3, 5,15 ,则它的体积为___________.

三、解答题
1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的底面直径为 12M ,高 4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原 来大 4M (高不变) ;二是高度增加 4M (底面直径不变)。 (1) 分别计算按这两种方案所建的仓库的体积; (2) 分别计算按这两种方案所建的仓库的表面积; (3) 哪个方案更经济些? 2.将圆心角为 120 ,面积为 3π 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
0

第 8 页 共 22 页

22

直线、 §2.2 点、直线、平面的位置关系
重难点: (1)空间点、直线、平面的位置关系 重难点:
(2)直线、平面平行的判定及其性质 (3)直线、平面垂直的判定及其性质

典型例题: 典型例题:在长方体 ABCD ? A1 B1C1 D1 ,底面是边长为 2 的正方形,高为 4 ,
则点 A1 到截面 AB1 D1 的距离为( A. )

8 3 4 C. 3

B.

3 8 3 D. 4

基础训练: 基础训练:
一、选择题 1.下列四个结论: ⑴两条直线都和同一个平面平行,则这两条直线平行。 ⑵两条直线没有公共点,则这两条直线平行。 ⑶两条直线都和第三条直线垂直,则这两条直线平行。 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。 其中正确的个数为( ) B. 1 C. 2 D. 3 A. 0 V 2.如右图所示,正三棱锥 V ? ABC (顶点在底面的射影是底 中, D, E , F 分别是 VC , VA, AC 的中点, P 为 VB 上任意一
D F A P B C

面正三角形的中心) 点 , 则 直 线 DE 与

PF 所成的角的大小是(
A. 300 B. 90
0

) D.随 P 点的变化而变化。 )个部分

E

C. 600

5.互不重合的三个平面最多可以把空间分成( A. 4 B. 5 C. 7 D. 8

6.把正方形 ABCD 沿对角线 AC 折起,当以 A, B, C , D 四点为顶点的三棱锥体积最大时,直线 BD 和平面 ABC 所成的角的大小为( A. 90 B. 60 二、填空题 1. 已知 a, b 是两条异面直线, c // a ,那么 c 与 b 的位置关系____________________。 2. 直线 l 与平面 α 所成角为 30 , l I α = A, m ? α , A ? m ,
0

) C. 45 D. 30

则 m 与 l 所成角的取值范围是 _________

第 9 页 共 22 页

22

3.棱长为 1 的正四面体内有一点 P ,由点 P 向各面引垂线,垂线段长度分别为

d1 , d 2 , d3 , d 4 ,则 d1 + d 2 + d3 + d 4 的值为



4.直二面角 α - l - β 的棱 l 上有一点 A ,在平面 α , β 内各有一条射线 AB ,

AC 与 l 成 450 , AB ? α , AC ? β ,则 ∠BAC =
三、解答题



1. 已知 E , F , G , H 为空间四边形 ABCD 的边 AB, BC , CD, DA 上的点, A 且 EH // FG .求证: EH // BD .
B F E H D G C

2.自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。

3. (如图)在底半径为 2 ,母线长为 4 的圆锥中内接一个高为 3 的圆柱, 求圆柱的表面积

3.在三棱锥 S ? ABC 中,△ ABC 是边长为 4 的正三角

形 , 平 面

SAC ⊥ 平 面 ABC , SA = SC = 2 3 , M 、 N 分 别 为
点。 (Ⅰ)证明: AC ⊥ SB ; (Ⅱ)求二面角 N - CM - B 的大小; (Ⅲ)求点 B 到平面 CMN 的距离。

AB, SB 的 中

第 10 页 共 22 页

22

§2.3 直线与方程
重难点: (1)直线的倾斜角与斜率 重难点:
(2)直线的方程 (点斜式、两点式、斜截式、截距式、一般式) (3)直线的交点坐标与距离公式

典型例题: 典型例题:过点 P (?1,3) 且垂直于直线 x ? 2 y + 3 = 0 的直线方程为(
A. 2 x + y ? 1 = 0 C. x + 2 y ? 5 = 0 B. 2 x + y ? 5 = 0 D. x ? 2 y + 7 = 0



一、选择题 1.设直线 ax + by + c = 0 的倾斜角为 α ,且 sin α + cos α = 0 , 则 a, b 满足( A. a + b = 1 C. a + b = 0 ) B. a ? b = 1 D. a ? b = 0

2.已知过点 A( ?2, m) 和 B ( m, 4) 的直线与直线 2 x + y ? 1 = 0 平行, 则 m 的值为( A. 0 B. ? 8 ) C. 2 D. 10 )

3.已知 ab < 0, bc < 0 ,则直线 ax + by = c 通过( A.第一、二、三象限 C.第一、三、四象限 B.第一、二、四象限 D.第二、三、四象限 )

4.直线 x = 1 的倾斜角和斜率分别是( A. 450 ,1 C. 90 ,不存在
0

B. 1350 , ?1 D. 180 ,不存在 )
0

5.已知点 A(1, 2), B (3,1) ,则线段 AB 的垂直平分线的方程是( A. 4 x + 2 y = 5 C. x + 2 y = 5 B. 4 x ? 2 y = 5 D. x ? 2 y = 5

6.若方程 (2m + m ? 3)x + (m ? m) y ? 4m + 1 = 0 表示一条直线,则实数 m 满足(
2 2



A. m ≠ 0 C. m ≠ 1

B. m ≠ ?

3 2 3 ,m ≠ 0 2

D. m ≠ 1 , m ≠ ?

二、填空题 1.点 P (1, ?1) 到直线 x ? y + 1 = 0 的距离是________________.
第 11 页 共 22 页

22

2.已知直线 l1 : y = 2 x + 3, 若 l 2 与 l1 关于 y 轴对称,则 l 2 的方程为__________; 若 l 3 与 l1 关于 x 轴对称,则 l 3 的方程为_________; 若 l 4 与 l1 关于 y = x 对称,则 l 4 的方程为___________; 3. 若原点在直线 l 上的射影为 ( 2,?1) ,则 l 的方程为____________________。 4.点 P ( x, y ) 在直线 x + y ? 4 = 0 上,则 x + y 的最小值是________________.
2 2

三、解答题 1.已知直线 Ax + By + C = 0 , (1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与 x 轴相交; (4)系数满足什么条件时是 x 轴; (5)设 P x 0 ,y 0 为直线 Ax + By + C = 0 上一点, 证明:这条直线的方程可以写成 A( x ? x 0 ) + B( y ? y 0 ) = 0 .

(

)

2.求经过直线 l1 : 2 x + 3 y ? 5 = 0, l 2 : 3 x ? 2 y ? 3 = 0 的交点且平行于直线 2 x + y ? 3 = 0 的直线方程。

3.经过点 A(1, 2) 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。

4.过点 A( ?5, ?4) 作一直线 l ,使它与两坐标轴相交且与两轴所围成的三角形面积为 5 .

第 12 页 共 22 页

22

§2.4 圆与方程
重难点: (1)圆与方程 重难点:
(2)直线、圆的位置关系 (3) 空间直角坐标系 )

典型例题: 典型例题:圆 x 2 + y 2 ? 2 x ? 2 y + 1 = 0 上的点到直线 x ? y = 2 的距离最大值是(
A. 2 基础训练: 基础训练: 一、选择题 1.圆 ( x + 2) 2 + y 2 = 5 关于原点 P (0, 0) 对称的圆的方程为 ( A. ( x ? 2) 2 + y 2 = 5 C. ( x + 2) 2 + ( y + 2) 2 = 5 B. x 2 + ( y ? 2) 2 = 5 D. x 2 + ( y + 2) 2 = 5 ) ) B. 1 + C. 1 +

2

2 2

D. 1 + 2 2

2.若 P ( 2, ? 1) 为圆 ( x ? 1) 2 + y 2 = 25 的弦 AB 的中点,则直线 AB 的方程是( A. x ? y ? 3 = 0 C. x + y ? 1 = 0 B. 2 x + y ? 3 = 0 D. 2 x ? y ? 5 = 0

4.将直线 2 x ? y + λ = 0 ,沿 x 轴向左平移 1 个单位,所得直线与圆 x 2 + y 2 + 2 x ? 4 y = 0 相切,则实数 λ 的值 为( A. ?3或7 ) B. ?2或8 C. 0或10 D. 1或11 )

5.在坐标平面内,与点 A (1, 2) 距离为 1 ,且与点 B (3,1) 距离为 2 的直线共有( A. 1 条 B. 2 条 C. 3 条 D. 4 条 )

6.圆 x 2 + y 2 ? 4 x = 0 在点 P (1, 3 ) 处的切线方程为( A. x +

3y ? 2 = 0

B. x +

3y ? 4 = 0

C. x ? 3 y + 4 = 0

D. x ? 3 y + 2 = 0

二、填空题 1 . 若 经 过 点 P ( ? 1, 0) 的 直 线 与 圆 x 2 + y 2 + 4 x ? 2 y + 3 = 0 相 切 , 则 此 直 线 在 y 轴 上 的 截 距 是 __________________. 2.由动点 P 向圆 x 2 + y 2 = 1 引两条切线 PA, PB ,切点分别为 A, B, ∠APB = 600 ,则动点 P 的轨迹方程 为 。 .

3.圆心在直线 2 x ? y ? 7 = 0 上的圆 C 与 y 轴交于两点 A (0, ? 4), B (0, ? 2) ,则圆 C 的方程为 4.已知圆 ( x ? 3) + y 2 = 4 和过原点的直线 y = kx 的交点为 P , Q
2

则 OP ? OQ 的值为________________。
第 13 页 共 22 页

22

5.已知 P 是直线 3 x + 4 y + 8 = 0 上的动点, PA, PB 是圆 x 2 + y 2 ? 2 x ? 2 y + 1 = 0 的切线, A, B 是切点, C 是圆心,那么四边形 PACB 面积的最小值是________________。 6.若 A(1, ?2,1), B (2, 2, 2), 点 P 在 z 轴上,且 PA = PB ,则点 P 的坐标为 三、解答题 1.点 P ( a, b ) 在直线 x + y + 1 = 0 上,求 a + b ? 2a ? 2b + 2 的最小值。
2 2

2.求以 A( ?1, 2), B (5, ?6) 为直径两端点的圆的方程。

3.求过点 A (1, 2 ) 和 B (1,10 ) 且与直线 x ? 2 y ? 1 = 0 相切的圆的方程。

4. 已知圆 C 和 y 轴相切,圆心在直线 x ? 3 y = 0 上,且被直线 y = x 截得的弦长为 2 7

,求圆 C 的方程

§3.1 算法初步
重难点: 重难点: 算法结构: 算法结构: 顺序结构,选择结构,循环结构

A

Y A

p

N B

A A N p Y

B

p Y N

典型例题: 典型例题:必修 3 课本 P 13 例题 6

第 14 页 共 22 页

22

§3.1 统计
重难点: (1)随机抽样 (2)用样本估计总体 (3)变量间的相关关系 重难点: 典型例题: 典型例题: 1.某地区有 3000 人参加今年的高考,现从中抽取一个样本对他们进行分析,每个考生被抽到的概 1 率为 ,求这个样本容量. 10

2.在 120 个零件中,一级品 24 个,二级品 36 个,三级品 60 个,从中抽取一个容量为 20 的一个样本, 求 ① 每个个体被抽到的概率, ② 若有简单随机抽样方法抽取时,其中个体α第 15 次被抽到的的概率, ③ 若用分层抽抽样样方法抽取时其中一级品中的每个个体被抽到的概率.

§3.2 概率
重难点: (1)随机事件的概率 (2)概率的基本性质 (3)古典概型 (4)几何概型 重难点: 基础训练: 基础训练:
1.一个总体含有 6 个个体,从中抽取一个样本容量为 2 的样本,说明为什么在整个抽样过程中每个个体被抽到的 概率相等. 2.在大小相同的 6 个球中,4 个是红球,若从中任意选 2 个,求所选的 2 个球至少有一个是红球的概率? 3.在大小相同的 6 个球中,2 个是红球,4 个是白球,若从中任意选取 3 个,求至少有 1 个是红球的概率? 4.盒中有 6 只灯泡,其中 2 只次品,4 只正品,有放回的从中任抽 2 次,每次抽取 1 只,试求下列事件的概率: (1)第 1 次抽到的是次品 (2)抽到的 2 次中,正品、次品各一次 5.一只口袋里装有 5 个大小形状相同的球,其中 3 个红球,2 个黄球,从中不放回摸出 2 个球,球两个球颜色不 同的概率? 6.设盒子中有 6 个球,其中 4 个红球,2 个白球,每次人抽一个,然后放回,若连续抽两次,则抽到 1 个红球 1 个白球的概率是多少? 7.甲乙两人约定在 6 时到 7 时在某地会面,并约定先到者等候另一人一刻钟,过时即可离去,求两人能会面的概 率? 8.如图,在等腰直角三角形 ABC 中,在斜边 AB 上任取一点 M ,求 AM < AC 的概率?

第 15 页 共 22 页

22

§4.1 三角函数
重难点: (1)任意角和弧度制 (2)任意角的三角函数 (3)三角函数的诱导公式 重难点:
(4)图像与性质 (5) y = A sin(ωx + ? ) 的图像 (6)三角函数模型的简单应用 典型例题: 典型例题:设 α 角属于第二象限,且 cos A.第一象限 基础训练: 基础训练: 一、选择题
0

α
2

= ? cos

α
2

,则

α
2

角属于(



B.第二象限

C.第三象限

D.第四象限

1.若角 600 的终边上有一点 (? 4, a ) ,则 a 的值是( A. 4 3 B. ? 4 3 C. ± 4 3 D. 3



2.给出下列各函数值:① sin( ?1000 0 ) ;② cos(?2200 0 ) ;

sin
③ tan(?10) ;④

7π cos π 10 .其中符号为负的有( 17π tan 9
C.③ ) D.④



A.①
2

B.②
0

3. sin 120 等于( A. ±

3 2

B.

3 2

C. ?

3 2

D.

1 2

4.已知 sin α =

5.若 α 是第四象限的角,则 π ? α 是( ) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6. sin 2 cos 3 tan 4 的值( ) B.大于 0 C.等于 0 D.不存在 A.小于 0 7.若 θ 为锐角且 cos θ ? cos θ = ?2 ,则 cos θ + cos θ 的值为(
?1 ?1

tan α 的值等于( 4 3 A. ? B. ? 3 4

4 ,并且 α 是第二象限的角,那么 5
) C.
3 4

D.

4 3



A. 2 2

B. 6

C. 6

D. 4 )

8.函数 y = sin(2 x + ? )(0 ≤ ? ≤ π ) 是 R 上的偶函数,则 ? 的值是(
第 16 页 共 22 页

22

A. 0

B.

π
4

C.

π
2

D. π

9.将函数 y = sin( x ?

π

3

) 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变) ,

再将所得的图象向左平移 A. y = sin

π
3

个单位,得到的图象对应的解析式是(



1 x 2 1 π C. y = sin( x ? ) 2 6

B. y = sin( x ? D. y = sin(2 x ?

1 2

π
2 )

)

π
6

10.函数 y = 3 cos( x ?

2 5

π
6

) 的最小正周期是(
C. 2π D. 5π



A.

2π 5

B.

5π 2

11.在函数 y = sin x 、 y = sin x 、 y = sin( 2 x + 最小正周期为 π 的函数的个数为( A. 1 个 B. 2 个 C. 3 个 ) D. 4 个

2π 2π ) 、 y = cos(2 x + ) 中, 3 3

12.若点 P (sin α ? cos α , tan α ) 在第一象限,则在 [0, 2π ) 内 α 的取值范围是(



5π ) 2 4 4 π 3π 5π 3π C. ( , )U( , ) 2 4 4 2
A. (

π 3π
,

) U (π ,

5π , ) U (π , ) 4 2 4 π 3π 3π D. ( , ) U ( ,π ) 2 4 4
B. (

π π

13.已知函数 f ( x ) = sin(2 x + ? ) 的图象关于直线 x = 则 ? 可能是( A. )

π
8

对称,

π
2

B.

?

π
4

C.

π
4

D.

3π 4

二、填空题
1.设 θ 分别是第二、三、四象限角,则点 P (sin θ , cos θ ) 分别在第___、___、___象限. 2.若角 α 与角 β 的终边关于 y 轴对称,则 α 与 β 的关系是___________。 3.若函数 f ( x ) = 2 tan(kx +
第 17 页 共 22 页

π
3

) 的最小正周期 T 满足 1 < T < 2 ,则自然数 k 的值为______.

22

4.满足 sin x =

3 的 x 的集合为_________________________________。 2

5.若 f ( x ) = 2 sin ?x (0 < ? < 1) 在区间 [0, 6.函数 y =

π
3

] 上的最大值是 2 ,则? =________。

2 + cos x 的最大值为________. 2 ? cos x

三、解答题
1.已知 tan α , 且 3π < α <

1 2 2 是关于 x 的方程 x ? kx + k ? 3 = 0 的两个实根, tan α
7 π ,求 cosα + sin α 的值. 2

2.已知 tan x = 2 ,求

cos x + sin x 的值。 cos x ? sin x

3.化简:

sin(540 0 ? x) 1 cos(360 0 ? x) ? ? sin(? x) tan(900 0 ? x) tan(450 0 ? x) tan(810 0 ? x) 2 , 且 m ≠ 1) ,
4 4

4.已知 sin x + cos x = m, ( m ≤
3 3

求(1) sin x + cos x ; (2) sin x + cos x 的值。 5.一个扇形 OAB 的周长为 20 ,求扇形的半径,圆心角各取何值时, 此扇形的面积最大? 6.求

1 ? sin 6 α ? cos 6 α 的值。 1 ? sin 4 α ? cos 4 α

7.画出函数 y = 1 ? sin x, x ∈ [0,2π ]的图象。 8. (1)求函数 y =

log 2

1 ? 1 的定义域。 sin x

(2)设 f ( x) = sin(cos x), (0 ≤ x ≤ π ) ,求 f ( x) 的最大值与最小值。

第 18 页 共 22 页

22

§4.2 平面向量
重难点: (1)平面向量的线性运算 (平面向量的加法运算、减法运算、数乘运算) 重难点:
(2)平面向量的基本定理及坐标表示 (3)平面向量的数量积 (4)平面向量应用举例 典型例题: 典型例题:已知平面向量 a = (3,1) , b = ( x, ?3) ,且 a ⊥ b ,则 x = ( A. ?3 基础训练: 基础训练: 选择题: 一.选择题: B. ?1 C. 1 D. 3

r

r

r

r



1.化简 AC ? BD + CD ? AB 得( B. DA C. BC 2.下列命题中正确的是( ) A. OA ? OB = AB

uuur

uuu r

uuu r

uuu r

uuu r A. AB



r

D. 0

uuu uuu uuu r r r uuu uuu r r B. AB + BA = 0 r uuu r r uuu uuu uuu uuur r r r C. 0 ? AB = 0 D. AB + BC + CD = AD r r r r r r 3.向量 a = (2,3) , b = ( ?1, 2) ,若 ma + b 与 a ? 2b 平行,则 m 等于
A. ?2 B. 2 C.

1 2 r r r r r r r r 4.已知向量 a , b 满足 a = 1, b = 4, 且 a ? b = 2 , 则 a 与 b 的夹角为
1 2
D. ? A.

π
6 3 2

B.

π
4
r

C.

π
3

D.

π
2

5.设 a = ( ,sin α ) , b = (cos α , ) ,且 a // b ,则锐角 α 为( A. 30
0

r

1 3

r

r



B. 60

0

C. 75

0

D. 45

0

r r r r r r r r r (2)若 a ? b = 0 ,则 a = 0 或 b = 0 (3)若不平行的两个非零向量 a, b ,满足 | a |=| b | ,则 ( a + b) ? ( a ? b) = 0 r r (4)若 a 与 b 平行,则 a b =| a | ? | b | 其中真命题的个数是( ) A. 0 B. 1 C. 2 D. 3
(1)若 k ∈ R ,且 kb = 0 ,则 k = 0 或 b = 0 , 7.已知向量 a = (cos θ , sin θ ) ,向量 b = ( 3 ,?1) 则 | 2a ? b | 的最大值, 最小值分别是( A. 4 2 ,0 )

6.已知下列命题中:

r

B. 4, 4 2 C. 16, 0 D. 4, 0 r r r r 0 8.已知 a , b 均为单位向量,它们的夹角为 60 ,那么 a + 3b = ( A. 7
第 19 页 共 22 页



B. 10

C. 13

D. 4

22

二.填空题。

1 AB =_________ 3 r r r r r 2.平面向量 a, b 中,若 a = (4, ?3) , b =1,且 a ? b = 5 ,则向量 b =____。
1.若 OA = ( 2,8) , OB = (?7,2) ,则 3.若 a = 3 , b = 2 ,且 a 与 b 的夹角为 60 ,则 a ? b =
0

r

r

r

r

。 .
→ →

4.若 | a |= 1,| b |= 2, c = a + b ,且 c ⊥ a ,则向量 a 与 b 的夹角为
→ → →

r

r

r

r

r

r

r

r

r

5.已知向量 a = (1, 2) , b = (?2,3) , c = (4,1) ,若用 a 和 b 表示 c ,则 c =____。 D 6.若 a = ( 2,3) , b = (?4,7) ,则 a 在 b 上的投影为________________。
→ → → →





F G E B

C

r r r r A 7.已知向量 a = (cos θ ,sin θ ) ,向量 b = ( 3, ?1) ,则 2a ? b 的最大值是



8.若 A(1, 2), B (2, 3), C ( ?2, 5) ,试判断则△ABC 的形状_________. 9.若 a = (2, ?2) ,则与 a 垂直的单位向量的坐标为__________。 10.若向量 | a |= 1,| b |= 2,| a ? b |= 2, 则 | a + b |= 三..解答题

r

r

r

r

r r

r r



uuu r r
r uuu uuu r DE 、 BF 、 CG . r r r r r r r r o 2.已知向量 a与b 的夹角为 60 , | b |= 4, ( a + 2b).( a ? 3b) = ?72 ,求向量 a 的模。
3.已知 a = (1, 2) , b = (?3,2) ,当 k 为何值时, (1) k a + b 与 a ? 3b 垂直? (2) k a + b 与 a ? 3 b 平行?平行时它们是同向还是反向?

r

r

r

1.如图, ABCD 中, E , F 分别是 BC , DC 的中点, G 为交点,若 AB = a , AD = b ,试以 a , b 为基底表示

r

r r

r

r

r

r

第 20 页 共 22 页

22

§4.3 三角恒等变换
重难点: (1)两角和与差的正弦、余弦和正切公式 重难点:
(2)简单的三角恒等变换

典型例题: 典型例题:已知 x ∈ (?
A.
7 24

π
2

, 0) , cos x =
C.
24 7

4 ,则 tan 2 x = ( 5
24 7



B. ?

7 24

D. ?

基础训练: 基础训练:
一、选择题

1 ? tan 2 2 x 1.函数 y = 的最小正周期是( 1 + tan 2 2 x
A.

)

π 4

B.

π 2

C. π

D. 2π )

2.函数 y = 3sin x + 4 cos x + 5 的最小正周期是( A.

C. π D. 2π 2 3.在△ABC 中, cos A cos B > sin A sin B ,则△ABC 为(

π

5

B.

π

) D.无法判定

A.锐角三角形
0

B.直角三角形
0 0

C.钝角三角形
0

4.设 a = sin14 + cos14 , b = sin16 + cos16 , c = A. a < b < c C. c < b < a 5.函数 y = A.周期为 C.周期为 B. b < a < c D. a < c < b )

6 ,则 a, b, c 大小关系( 2



2 sin(2 x ? π ) cos[2( x + π )] 是(

π π
4 2

的奇函数 的奇函数

B.周期为 D.周期为

π π
4 2

的偶函数 的偶函数

6.已知 cos 2θ = A.

2 4 4 ,则 sin θ + cos θ 的值为( 3
11 18
C.



13 18

B.

7 9

D. ?1

cos 2 x 7.当 0 < x < 时,函数 f ( x ) = 的最小值是( 4 cos x sin x ? sin 2 x

π



1 2 1 D. C. 2 4 o o o o 8. sin163 sin 223 + sin 253 sin 313 = (
A. 4 B.
第 21 页 共 22 页



22

A. ?

1 2

B.

1 2

C. ?

3 2

D.

3 2
)

9.若 α ∈ (0, π ) ,且 cos α + sin α = ?
17 9

1 ,则 cos 2α = ( 3

A.

B. ±

17 9
17 3

C. ?

17 9

D.

二、填空题 1.求值: tan 20 + tan 40 + 3 tan 20 tan 40 = _____________。
0 0 0 0

2.若

1 + tan α 1 = 2008, 则 + tan 2α = 1 ? tan α cos 2α



3.函数 f ( x ) = cos 2 x ? 2 3 sin x cos x 的最小正周期是___________。

4.已知 sin

θ
2

+ cos

θ
2

=

2 3 , 那么 sin θ 的值为 3

, cos 2θ 的值为 时, cos A + 2 cos



5. ?ABC 的三个内角为 A 、 B 、 C ,当 A 为 为 三、解答题 。

B+C 取得最大值,且这个最大值 2

1.已知 sin α + sin β + sin γ = 0, cos α + cos β + cos γ = 0, 求 cos( β ? γ ) 的值. 2.若 sin α + sin β =

2 , 求 cos α + cos β 的取值范围。 2

3.求值:

1 + cos 200 ? sin100 (tan ?1 50 ? tan 50 ) 0 2sin 20

4.已知函数 y = sin

x x + 3 cos , x ∈ R. 2 2 (1)求 y 取最大值时相应的 x 的集合;

(2)该函数的图象经过怎样的平移和伸变换可以得到 y = sin x ( x ∈ R ) 的图象.

第 22 页 共 22 页



更多相关文章:
高中数学复习试题(完整版)
高中数学复习试题(完整版)_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档高中数学复习试题(完整版)_数学_高中教育_教育专区。高考中常见的数学试题 ...
高一数学必修4平面向量练习题及答案(完整版)
高一数学必修4平面向量练习题及答案(完整版)_数学_高中教育_教育专区。假期补课练习首选 平面向量练习题一、选择题 1、若向量 a = (1,1), b = (1,-1),...
高中数学必修1课后习题答案完整版
高中数学必修1课后习题答案完整版_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 高中数学必修1课后习题答案完整版_数学_高中教育_教育专区。...
人教版高中数学必修2课后习题答案 完整版
人教版高中数学必修2课后习题答案 完整版_数学_高中教育_教育专区。 文档贡献者 亲爱的小巫 贡献于2014-11-13 1/2 相关文档推荐 ...
2015年湖北省(理科)高考数学真题试题(完整版)
2015年湖北省(理科)高考数学真题试题(完整版)_数学_高中教育_教育专区。2015 年普通高等学校招生全国统一考试(湖北卷) 数学(理工类)本试卷共 6 页,22 题,其中...
(人教版)高二理科数学上学期期末试卷(含答案)免费下载
(人教版)高二理科数学上学期期末试卷(含答案)免费下载_高二数学_数学_高中教育_教育专区。已编辑好,可直接打印高二上学期理科数学期末考试卷一、选择题(本大题共 ...
2015年最新高考数学考试大纲(完整版)
2015年最新高考数学考试大纲,有助于对高考考试方向的掌握以及复习。...试题适用于使用全国中小学教材审定委员会初审 通过的各版本普通高中课程标准实验...
高中数学选修4-5《不等式选讲》练习题(含详解)
北师大版高中数学选修4-5不... 34页 8财富值如要投诉违规内容,请到百度文库...? ... ? ?2 n 2 3 n 数学选修 4-5 [综合训练 B 组]一、选择题 1...
高考数学专题:立体几何新题型的解题技巧
高考数学专题:立体几何新题型的解题技巧。高考数学专题状元源 http://zyy100.com/ 免注册、 免费提供中学高考复习各科试卷下载及高中学业水平测试各科资源下载 第六...
2016届广州第2次模拟考试试卷(理科)(最新完整版)
2016届广州第2次模拟考试试卷(理科)(最新完整版)_高三数学_数学_高中教育_教育专区。2016 年广州市普通高中毕业班综合测试(二) 数学(理科)注意事项: 1. 本试卷...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图