9512.net
甜梦文库
当前位置:首页 >> 数学 >>

2.3.1-对数---对数的概念2



第2章 函数概念与基本初等函数Ⅰ

2.3.1 对数---对数的概念

对数
对数的创始人是苏格兰数学家纳皮尔 (Napier,1550年~1617年)。他发明了供天 文计算作参考的对数,并于 1614 年在爱丁堡 出版了《奇妙的对数定律说明书》,公布了 他的发明。恩格斯把对数的发明与解析几何 的创始,微积分的建立并称为 17

世纪数学的 三大成就。

引例1:
2 . 2 . 2 节的例4中, 我们研究了一种放射性 物质 不断变化为其他物质的 过程.设该物质最初的 质量是1 , 则经过 x 年, 该物质剩留量 y ? 0.84 x .

由此, 知道了经过的时间 x , 就能求出该物质的 剩留量 y ; 反过来, 知道了该物质的剩留量 y ,怎 样求出所经过的时间 x呢?

? 特别地, 经过多少年这种物质的 剩留量为 原来的一半?

抽象出:

0.84 ? 0.5 ? x ? ?
x

庄子:一尺之棰,日取其半,万世不竭。 引例2: (1)取4次,还有多长? (2)取多少次,还有0.125尺? 引例3:假设2002年我国国民生产总值为a亿元, 如果每年平均增长8%,那么经过多少年国 民生产总值是2002年的2倍?

?1? 1? 抽象出:1 (1).? ? ? ? ? (2).? ? ? 0.125? x ? ? ?2? ? 2?
4

x

2.?1 ? 8%? ? 2 ? x ? ?
x

这是已知底数和幂的值,求指数! 应怎样来求呢?

4.在式子 2= 16中,
有三个数2(底),4(指数)和16(幂) (1)由2,4得到数16的运算是 乘方运算。

4

记为: 2= 16
(2)由16,4得到数2的运算是 开方运算。

4

记为: 16 ? 2
4

(3)由2,16得到数4的运算是 对数运算!

记为:log216 ? 4

1 . 对数的概念
b ? ? 一 般 地 , 如 果 a a ? 0 , a ? 1 的 b 次 幂 等 于 N , 即 a ? N ,那 么 在上式中的 x 的值是唯一确定的。 就 称b 是 以a 为 底N的 对数 ?log arithm?, 记 作 loga N ? b,

如: 2 ?8 ? x ? 3;?base of log arithm?, N 叫 做真数 其 中, a 叫做 对 数的 底数
x

? proper num ber ?. x b 3 ? 27 ? x 3.N 与b ? log a N 两个等式所表 由对数的定义可知 , a? ?
示的是a, b, N 三个量之间的同一个关 系.它们是等价的 即: ab

? N (a ? 0, a ? 1) ? log a N ? b

例如 : 3 2 ? 9 ? log 3 9 ? 2 1 1 log 4 2 ? ? 4 2 ? 2 . 2

2. 指数式和对数式的关系相互转化

指数 幂 真数

对数

a ? N ? log a N ? b
b
底数

由对数的概念可知对数有下列性质:
1. 负数和零没有对数。

2. log a 1 ? 0 (a ? 0 , a ? 1)
3. log a a ? 1 (a ? 0 , a ? 1) 4.

a

loga N
b

?N

(a ? 0 , a ? 1)

5. log a a ? b (a ? 0 , a ? 1)

探究:
⑴负数与零没有对数 ⑵
(∵在指数式中 N > 0 )

log a 1 ? 0, log a a ? 1
0 a ? 1 ? loga 1 ? 0 a ? 0 对任意 且 a ? 1 都有

a ? a ? loga a ? 1
1

⑶对数恒等式
如果把 a b ? N 中的 b写成

loga N

则有

a

loga N

?N

例1 将下列指数式改写成对 数式

?1? 2

4

? 16 ;

?2? 3

?3

1 ? ; 27

?1? ?3? 5 ? 20 ; ?4?? ? ? 0.45 . ? 2?
a

b



?1?log2 16 ? 4 .

1 ?2? log3 ? ?3 . 27

?3?log5 20 ? a .

?4?log1 0.45 ? b .
2

练习1 将下列指数式写成对数式:

5 ? 625? log5 625 ? 4 1 1 ?6 ? log 2 ? ?6 (2 ) 2 ? 64 64 (3) 3a ? 27 ? log3 27 ? a m ?1? (4) ? ? ? 5.13 ? log1 5.13 ? m 3 ? 3?
(1 )
4

例2 将下列对数式改写成指 数式 ?1? log 5 125 ? 3 ; ?2? log 1 3 ? ?2 ; ?3? log 10 a ? ?1.699 .
3



?1?5 3 ? 125.
? 1 ? ?2?? ? ? 3?
?2

? 3.

?3?10?1.699 ? a .

练习2 将下列对数式写成指数式: (1) log1 27 ? ?3 ?

1 ? ?3 ? (2) log5 125
(3) ln 10 ? 2.303 ? (4) lg0.01 ? ?2 ?

3

?1? ? ? ? 27 ? 3? 1 ?3 5 ? 125
e
2.303 ?2

?3

? 10

10 ? 0.01

例3 求下列各式的值 : ?1?log 2 64 ; ?2?log 9 27 .


?1?由2 6 ? 64, 得 log2 64 ? 6. ?2?设 x ? log9 27, 则根据对数的定义知
9 x ? 27, 即3 2 x ? 3 3 ,
得 2x ? 3
3 x? , 2
你能说出此处的推理依 据吗?

所以

3 log 9 27 ? . 2
3 3 2

3 解法二: log9 27 ? log9 3 ? log9 9 ? 2

通常将以 10为底的对数称为 常用对数

?com m onlog arithm?, 如 log10 2, log10 12
lg N , 如 lg 2, lg 12 等 .

等 .为了方便起见 , 对数 log10 N 简记为

在科学技术中 , 常常使用以 e 为底的对 数, 这 种 对数 称为 自然对数 ( natural log arithm) , e ? 2.71828? ? ? 是 一个无理 数 .正数 N 的自然对数 loge N 一般记为 ln N , 如 loge 2, loge 15 分别记为 ln 2, ln 15等.

练习3计算: (1) log4 3 81 (3)

(2)log ?2? 3 ? 2 ? 3

?

?

log3

解法一:设 x ? log 3 81 则 ?4 3 ? ? 81, 3 ? 34 , ? x ? 16
x
4

5

4

625
x 4

解法二: log 4 3 81 ? log 4 3 ( 4 3 )16 ? 16

(2)log ?2? 3 ? 2 ? 3

?

?

解法一: 设 x ? log ?2? 3 ? 2 ? 3
x ?1

?

?
?1

则 ?2 ? 3 ? ? 2 ? 3 ? ?2 ? 3 ? , ? x ? ?1
log ?2? 3 ? ?2 ? 3 ? ? log?2? 3 ? ?2 ? 3 ? ? ?1 解法二:

(3 )

log3
4 x

解法一:设 则
3

? 5 ? ? 625,
54

x ? log3
5

5

4

625
4 x 3

5

4

625
? 54 , ? x ? 3
5

解法二: log3

625 ? log3 4 ( 3 54 )3 ? 3

小结 :

定义:一般地,如果

a?a ? 0, a ? 1?
,那么数 b叫做

的b次幂等于N, 就是

a ?N
b

以a为底 N的对数,记作 loga N ? b a叫做对数的底数,N叫做真数。

常见的等式:

(1)

log a 1 ? 0

(2)
(3)
(4)

log a a ? 1
a
loga N

=N
b

loga a ? b



更多相关文章:
§3.2.1对数的概念10-23
高一数学学案 班级:___ 姓名:___ 小组:___ §3.2.1 对数的概念【学习目标】 1. 了解对数产生的背景,理解对数的概念; 2. 会用规范的语言和符号表示对数;...
3.2.1对数及常用对数
2013—2014 学年度下学期 必修 1--1 第三章:基本初等函数 凌海高中高一数学组 编制:赵鸿艳 审校:高一数学组 3.2.1 对数的概念与常用对数【教学目标】 1....
2.1.3对数计算---有答案
【学习目标】 1.理解对数的概念,掌握 1 3.对数的运算性质 2.2.1 对数对数运算【温馨寄语】 你的天赋好比一朵火花,假如你用勤勉辛劳去助燃,它 定会变成...
2.1.3对数计算---无答案
2.1.3对数计算---无答案_数学_高中教育_教育专区。2.2.1 对数对数运算 1.对数的有关概念 1 10. 若 11. 已知 且 . ,那么 ,则 .. 12. 下列指数...
3.2.1对数及其运算(两课时)
3.2.1对数及其运算(两课时)_高一数学_数学_高中教育_教育专区。课题 §3.2.1 对数及其运算() ()学习目标 知识与技能:理解对数的概念,能根据对数概念进行...
必修1.2.2.3对数函数及其性质(一)
必修1.2.2.3对数函数及其性质()_高中教育_教育专区。肩负责任 用心教学 §必修 1.2.2.3 教学目标 对数函数及其性质() 1.理解对数的概念,体会对数函数...
3.2.1对数及其运算
3.2.1对数及其运算_数学_高中教育_教育专区。3.2.1对数及其运算》导学案编制:杨志永 使用时间:2015.11 、学习目标: 1、 理解对数的概念及其运算性质。 ...
21-2.2.1对数与对数运算(3)
21-2.2.1对数对数运算(3)_数学_高中教育_教育专区。2.2.1 对数对数...自主探究点:如何运用对数的概念与指数式与对数式的关系证明换底公式. 考试点: ...
3.2.1对数及其运算
对数函数的概念 D. .我的收获与疑惑 2. 对数恒等式 3. 对数的性质 4. 常用对数与自然对数的定义与记法 5. (1)负数与 0 是否有对数?为什么? (2)loga...
更多相关标签:
对数的概念    对数函数的概念    对数的概念 教学设计    对数的概念 ppt    对数概念    对数的概念教案    对数概念及其运算    对数函数的概念ppt    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图