9512.net
甜梦文库
当前位置:首页 >> 数学 >>

秦九韶算法及其例题



秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。 在西方被称作霍纳 算法(Horner algorithm 或 Horner scheme) ,是以英国数学家威廉· 乔治· 霍纳命名的. 把一个 n 次多项式 f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式: f(x)=a[n]x^n+a[n-1]x^(n-1

))+......+a[1]x+a[0] =(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0] =((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0] =...... =(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0]. 求多项式的值时,首先计算最内层括号内一次多项式的值,即 v[1]=a[n]x+a[n-1] 然后由内向外逐层计算一次多项式的值,即 v[2]=v[1]x+a[n-2] v[3]=v[2]x+a[n-3] ...... v[n]=v[n-1]x+a[0] 这样,求 n 次多项式 f(x)的值就转化为求 n 个一次多项式的值。 (注:中括号里的数表示下标) 结论:对于一个 n 次多项式,至多做 n 次乘法和 n 次加法。 [编辑本段]意义 该算法看似简单,其最大的意义在于将求 n 次多项式的值转化为求 n 个一次多项式的值。 在人工计算时, 利用秦九韶算法和其中的系数表可以大幅简化运算; 对于计算机程序算法而 言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少 CPU 运算时 间。



更多相关文章:
秦九韶算法及其例题
秦九韶算法及其例题_数学_高中教育_教育专区。秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。 在西方被称作霍纳 算法(Horner algorithm 或 ...
秦九韶算法与K进制练习题(含详细解答)
秦九韶 k 进制练习题 一.选择题(共 16 小题) 1.把 77 化成四进制数的末位数字为( A.4 B.3 C.2 4 3 ) D.1 2 2.用秦九韶算法求多项式 f(...
秦九韶算法习题
秦九韶算法习题_高一数学_数学_高中教育_教育专区。必修三 1.3 算法案例---...an , 如果在一种算法中,计算 x0 k (k=2,3,4,…,n)值需要 k-1 ...
秦九韶算法例题
秦九韶算法例题_数学_高中教育_教育专区。把一个 n 次多项式 f(x)=a[n]x...(注:中括号里数表示下标) 上述方法称为秦九韶算法。直到今天,这种算法仍是...
算法案例---秦九韶算法
(三)例题讲解 例 1.利用秦九韶算法计算 f ( x) = 0.83 x 5 + 0.41x 4 + 0.16 x 3 + 0.33 x 2 + 0.5 x + 1 当 x = 5 时的值,并...
1.3.2算法案例(秦九韶算法)[1]
教学重点 教学难点 课前准备 教学方法 教学课时 秦九韶算法的特点。 秦九韶算法的先进性理解。 自学导学案,检测题,多媒体课件,vb 程序 先学后教法 1 课时 ...
高一数学必修3公式总结以及例题
高一数学必修3公式总结以及例题_数学_高中教育_教育专区。高一数学必修 3 公式总结以及例题 §1 算法初步 ? 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的...
秦九韶算法
秦九韶算法_数学_高中教育_教育专区。秦九韶算法及例题应用 数值分析实验报告实验序号:1 班级 实验名称 实验所用软件及版本 10 应数 A 班 姓名 秦九韶算法 ...
算法经典例题及答案
算法经典例题及答案_数学_高中教育_教育专区。算法专题训练 1、设计一个程序框图...10、用秦九韶算法求多项式 f(x)=x -5x +6x +x +0.3x+2 当 x=-2 时...
更多相关标签:
秦九韶算法例题    秦九韶算法例题解析    秦九韶算法    秦九韶算法c语言程序    秦九韶算法matlab程序    用秦九韶算法求多项式    秦九韶算法程序    matlab秦九韶算法    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图