9512.net
甜梦文库
当前位置:首页 >> 数学 >>

福建省龙海二中2014-2015学年高二数学下学期期末考试卷 理



龙海二中 2014—2015 学年第二学期期末考试 高二数学(理)试题
(满分:150 分 考试时间:120 分钟) 一、选择题(本大题共 10 小题,每小题 5 分,满分 50 分.在每小题给出的四个选项 中,只有一项符合要求的.) 1. 函数 y ?

x?6 的定义域为( x ?1

)

A. ? ??

,1? ??6, ??? C. ( ?3 ,1)∪(2,+∞) 2. 已知 A. 1 ? 2i

B. ? ??,1? ??6, ??? D. [ ?3 ,1)∪(2,+∞) )

x ? 1 ? yi , 其中 x, y 是实数, i 是虚数单位, 则 x+yi 的共轭复数为 ( 1? i
B. 1 ? 2i ) C. 2 ? i D. 2 ? i

3. 下列有关命题的说法中,正确的是(

2 2 A.命题“若 x ? 1 ,则 x ? 1 ”的否命题为“若 x ? 1 ,则 x ? 1 ”

B.命题“若 ? ? ? , 则 tan ? ? tan ? ”的逆命题为真命题 C.命题“ ?x ? R, 使得x2 ? x ? 1 ? 0 ”的否定是“ ?x ? R, 都有x2 ? x ? 1 ? 0 ”
2 D.“ x ? 1 ”是“ x ? x ? 2 ? 0 ”的充分不必要条件

4. 设 A ? ?2,3? , B ? ? ??, a ? 若 A ? B 则 a 的取值范围是( A.a≥3 B.a≥2 C. a ? 3

) D.a≤2

5. 设随机变量 ? 服从正态分布 N (2, 9) , 若 p ?? ? c ? 5? = p ? ? < c ? 1? , 则 c=( ) A.1 有( A.6 种 ) B. 30 种 C. 12 种 D.36 种 B.2 C.3 D.4

6. 甲乙两人从四门课程中各选两门, 则甲乙所选课程 中至少有一门不相同的选法共

7. 下 列 函 数 f ( x ) 中 , 满 足 “ 对 任 意 的 x1 , x2 ? (??,0) , 当 x1 ? x2 时 , 总 有

-1-

f ( x1 ) ? f ( x2 ) ”的是(
A. f ( x) ?

) B. f ( x) ? ln( x ? 1)

1 x

C. f ( x) ? ( x ? 1)2

D. f ( x) ? e x

8. 若函数 y ? 最小值是(

x3 ? x 2 ? 1(0 ? x ? 2) 的图象上任意点处切线的倾斜角为 ? , 则? 的 3
) B.

? A. 4

? 6

C.

5? 6

D.

3? 4

9. 已知定义在 R 上的奇函数 f ( x ) ,设其导函数 f '( x) ,当 x ? ? ??,0? 时,恒有 (错误!未找到引用源。> 0 )则满足 xf '( x) ? f (? x) ,令 F ( x) ? ? f ( x) ,

F (3) ? F (2 x ? 1) 的实数 x 的取值范围是(
A. (-1,2) B. ( ?1, )

) C. ( , 2)

1 2

1 2

D. (-2, 1)

10. 设 f ( x ) 是定义在 R 上的偶函数,且 f (2 ? x) ? f (2 ? x) ,当 x ? [?2, 0) 时,

f ( x) ? (

2 x 若在区间 (?2, 6) 内的关于 x 的方程 f ( x) ? log a ( x ? 2) ? 0(a>0 ) ?1 , 2
) D. (1, 4)

且 a≠1)恰有 4 个不同的实数根,则实数 a 的取值范围是( A. ( ,1)

1 4

B. (8, ??)

C. (1,8)

二、填空题: (本大题共 5 小题,每小题 4 分,满分 20 分) 11. 若 x ? 2 y ? 3z ? 1 ,则 x ? y ? z 的最小值为
2 2 2

12. 某种产品的广告费支出 x 与销售额 y 之间有如下对应数据(单位:百万元) .

x y

2 30

4 40

5 60

6

8 70

t

^=6.5x+17.5,则表中 根据上表提供的数据,求出 y 关于 x 的线性回归方程为y
-2-

t 的值为
13. 给出下列不等式:1 ?

1 1 1 1 ? ? 1,1 ? ? ? 2 3 2 3

?

1 3 1 1 ? ,1 ? ? ? 7 2 2 3

?

1 ? 2, 15

1?

1 1 ? ? 2 3

?

1 5 ? ,…,则按此规律可猜想第 n 个不等式为 31 2

14. 14.若 a ?

?

?

0

sin xdx ,则二项式 (a x ?

1 6 ) 展开式中含 x 的项的系数是____. x

15. 已知下列四下命题:

x1 ? x2 1 ) ? [ f ( x1 ) ? f ( x2 )] ; 2 2 2 2 ②函数 f ( x) ? log 2 ( x ? 1 ? x ), g ( x) ? 1 ? x 均是奇函数; 2 ?1
①函数 f ( x) ? 2x 满足 : 对任意 x1 , x2 ? R, f ( ③函数 f ( x) ? e? x ? e x 切线斜率的最大值是-2;
1

④函数 f ( x) ? x 2 ? ( ) x 的在区间( , )上无零点. 其中正确命题的序号是 三、解答题(本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算 步骤) 16. (本小题 13 分)已知极坐标的极点在平面直角坐标系的原点 O 处,极轴与 x 轴 的正半轴重合,且长度单位相同.直线 l 的极坐标方程为: ? ?

1 4

1 1 4 3

6

2 sin(? ? ) 4

?

,点

P(2cos ? , 2sin ? ? 2) ,参数 ? ??0, 2? ? .
(Ⅰ)求点 P 轨迹的直角坐标方程;(Ⅱ)求点 P 到直线 l 距离的最大值.

17. (本小题 13 分)已知 a ? b ? 1 ,对 ?a, b ?(0, ?? ) , ? 恒成立,求 x 的取值范围

1 a

4 ?| x ? 10 | ? | x ? 6 | b

18. (本小题 13 分)设命题 p:函数 q:不等式 对一切实数均成立.

的定义域为 R;命题

-3-

(1)如果 p 是真命题,求实数 的取值范围; (2)如果命题“p 或 q”为真命题,且“p 且 q”为假命题,求实数 的取值范围。 19.(本小题 13 分)甲乙两班进行消防安全知识竞赛,每班出 3 人组成甲乙两支代 表队,首轮比赛每人一道必答题,答对则为本队得 1 分,答错不答都得 0 分,已知

甲队 3 人每人答对的概率分别为

,乙队每人答对的概率都是

.设每人回

答正确与否相互之间没有影响,用 表示甲队总得分

(Ⅰ)求随机变量 的分布列及其数学期望 E( ) ; (Ⅱ)求在甲队和乙队得分之和为 4 的条件下,甲队比乙队得分高的概率.

20.(本小题 14 分)已知函数 f(x)=2 +k·2 ,k∈R. (1)若函数 f(x)为奇函数,求实数 k 的值; (2)若对任意的 x∈[0,+∞)都有 f(x)>2 成立,求实数 k 的取值范围.
-x

x

-x

21.(本小题 14 分) 已知函数 f ( x) ? ax ? 1 ? ln x (a ? R) . (Ⅰ)讨论函数 f ( x) 在定义域内的极值点的个数; (Ⅱ)若函数 f ( x) 在 x ? 1 处取得极值,对 ?x ? (0,??) , f ( x) ? bx ? 2 恒成立, 求实数 b 的取值范围; (Ⅲ)当 0 ? x ? y ? e 且 x ? e 时,试比较
2

y 1 ? ln y 与 的大小. x 1 ? ln x
-4-

龙海二中 2014—2015 学年第二学期期末考 龙海二中 2014—2015 学年第二学期期末考试 高二数学(理)试题参考答案 一、选择题。(本题 10 小题,每小题 5 分,共 50 分, 每小题只有一个选项符合题意, 请将正确答案填入答卷中) 题号 答案 1 B 2 C 3 D 4 C 5 D 6 B 7 A 8 D 9 A 10 B

二、填空题:(本大题共 5 小题,每小题 4 分,共 20 分.) 11、

1 ; 6

12、50



13、 1 ?

1 1 1 n ?1 ? ? ? ? n ?1 ? ; 2 3 2 2 ?1

14、240; 15、①②③ 三、解答题:(本大题共 6 小题,共 80 分.解答应写出文字说明、证明过程或演算步 骤.) 16 解:(Ⅰ) ?

? x ? 2cos ? , 且参数 ? ? ?0, 2? ? , ? y ? 2sin ? ? 2.

所以点 P 的轨迹方程为 x2 ? ( y ? 2)2 ? 4 . ··············· 5 分 (Ⅱ)因为 ? ?

6

2 sin(? ? ) 4

?

,所以 ? 2 sin(? ?

?
4

) ? 6,

所以 ? sin ? ? ? cos? ? 6 ,所以直线 l 的直角坐标方程为 x ? y ? 6 ? 0 . ·· 9 分

2 2 sin(? ? ) ? 4 2cos ? ? 2sin ? ? 2 ? 6 2sin ? ? 2cos ? ? 4 4 d? ? ? 2 2 12 ? 12 ? 2?2 2
,即点 P 到直线 l 距离的最大值 2 2 ? 2 . ………13 分

?

-5-

17 解:解:∵ a>0,b>0 且 a+b=1 ∴

1 4 1 4 b 4a + =(a+b)( + )=5+ + ≥9, a b a b a b
………4 分



1 4 + 的最小值为 9, a b

因为对

a,b∈(0,+∞),使

1 4 ? ?| x ? 10 | ? | x ? 6 | 恒成立, a b
………6 分

所以, 9 ?| x ? 10 | ? | x ? 6 |

当 x≤-6 时,16≤9, 无解

………8 分 ………10 分

当 -6<x<10 时,4-2x≤9, ∴ ?2.5 ? x ? 10 当 x≥10 时,-16≤9, ∴x≥10 ∴

………12 分 ………13 分

? x x ? ?2.5?

18.(1)若命题 p 为真命题,则 当 a ? 0 时,不合题意。

恒成立 ………6 分

(2)若命题 q 为真命题,则

;………9 分

“p 或 q”为真命题且“p 且 q”为假命题,即 p,q 一真一假





………13 分

19(1) 的可能取值为 0,1,2,3

-6-

;

;



……5 分

0

1

2

3

的分布列为

………7 分 (2) 设 “甲队和乙队得分之和为 4”为事件 A,“甲队比乙队得分高”为事 件B



;……9 分

…13 分 20 解:(1)∵f(x)=2 +k·2 是奇函数, ∴f(-x)=-f(x),x∈R,
-7x -x

即 2 +k·2 =-(2 +k·2 ), ∴(1+k)+(k+1)·2 =0 对一切 x∈R 恒成立, ∴k=-1. ………7 分
-x 2x

-x

x

x

-x

(2)∵x∈[0,+∞),均有 f(x)>2 , 即 2 +k·2 >2 成立, ∴1-k<2 对 x≥0 恒成立, ∴1-k<(2 )min.
2x 2x 2x x -x -x

………11 分
2x

∵y=2 在[0,+∞)上单调递增,∴(2 )min=1, ∴k>0. 21 解: (Ⅰ) f ?( x) ? a ?

………14 分

1 ax ? 1 , 当 a ? 0 时,f ?( x) ? 0 在 (0,??) 上恒成立, 函数 f ( x) ? x x 在 (0,??) 单调递减,∴ f ( x) 在 (0,??) 上没有极值点;

当 a ? 0 时, f ?( x) ? 0 得 0 ? x ?

1 1 , f ?( x) ? 0 得 x ? , a a

1 ? 1? ?1 ? ∴ f ( x) 在 ? 0, ? 上递减,在 ? ,?? ? 上递增,即 f ( x) 在 x ? 处有极小值. a ? a? ?a ?

∴当 a ? 0 时 f ( x) 在 (0,??) 上没有极值点, 当 a ? 0 时, f ( x) 在 (0,??) 上有一个极值点. ··············· 5 分 (Ⅱ)∵函数 f ( x) 在 x ? 1 处取得极值,∴ a ? 1 , ∴ f ( x) ? bx ? 2 ? 1 ? 令 g ( x) ? 1 ?
1 ln x ? ? b , ··················· 7 分 x x

1 ln x ,可得 g ( x) 在 0, e 2 上递减,在 e 2 ,?? 上递增, ? x x

?

?

?

?

∴ g ( x) min ? g (e 2 ) ? 1 ?

1 e
2

,即 b ? 1 ?

1 . ················ 9 分 e2

1 ln x ? g ( x) ? 1 , ················· 10 分 (Ⅲ)解:令 h( x) ? ? x x
由(Ⅱ)可知 g ( x) 在 (0, e ) 上单调递减,则 h( x) 在 (0, e ) 上单调递减
-82 2

∴当 0 ? x ? y ? e 2 时, h( x) > h( y ) ,即 当 0 ? x ? e 时, 1 ? ln x ? 0, ∴

1 ? ln x 1 ? ln y . ········ 12 分 ? x y

y 1 ? ln y ? , x 1 ? ln x y 1 ? ln y 当 e ? x ? e 2 时, 1 ? ln x ? 0, ∴ ? ··············· 14 分 x 1 ? ln x

-9-



更多相关文章:
福建省龙海二中2014-2015学年高二下学期期末考试数学(理)试卷(Wor
福建省龙海二中2014-2015学年高二下学期期末考试数学()试卷(Wor_数学_高中教育_教育专区。龙海二中 2014—2015 学年第二学期期末考试 高二数学()试题 (满分:...
福建省龙海市第二中学2014-2015学年高二下学期期末考试数学(文)试题
福建省龙海市第二中学2014-2015学年高二下学期期末考试数学(文)试题_数学_高中教育_教育专区。龙海二中 2014-2015 学年第二学期期末考试 高二数学(文科)试卷(考试...
福建省四地六校2014-2015学年高二数学下学期第二次月考试卷 理
福建省四地六校2014-2015学年高二数学下学期第二次月考试卷 _数学_高中教育_教育专区。“华安、连城、永安、漳平一中、龙海二中、泉港一中”六校联考 2014—2015...
福建省四地六校2014-2015学年高二下学期第二次月考数学(理)试卷 Word版含答案
(本小题满分 14 分) 解: -6- “华安、连城、永安、漳平一中、龙海二中、泉港一中”六校联考 20142015 学年下学期第二次月考 高二数学()参考答案一、...
福建省龙海二中2015-2016学年高二数学上学期期末考试试题 理
福建省龙海二中2015-2016学年高二数学学期期末考试试题 _数学_高中教育_教育专区。龙海二中 2015-2016 学年第一学期期末考 高二数学()试卷(考试时间:120...
2014-2015学年福建省漳州市龙海二中高二(下)期末数学试卷(理科)
2014-2015学年福建省漳州市龙海二中高二(下)期末数学试卷(理科)_高二数学_数学...再利用分步计数原 ,即可求得结论. 解答: 解:甲、乙所选的课程中至少有 1...
福建省龙海二中2015-2016学年高二上学期期末考试数学(理)试卷
福建省龙海二中2015-2016学年高二学期期末考试数学()试卷_资格考试/认证_...(考试时间:120分钟 总分:150分) 命题人:龙海二中 第Ⅰ卷 (选择题 共 60 ...
2015-2016学年福建省漳州市龙海二中高二(下)期末数学试卷(理科)(解析版)
2015-2016学年福建省漳州市龙海二中高二()期末数学试卷(理科)(解析版)_高二数学_数学_高中教育_教育专区。2015-2016 学年福建省漳州市龙海二中高二()期末...
福建省四地六校2015-2016学年高二上学期第一次联考(10月)数学(理科)试卷 Word版含答案
“华安、连城、永安、漳平一中,龙海二中,泉港一中”六校联考 2015-2016 学年学期第一次月考 高二数学答题卷(理科)(考试时间:120分钟 命题人:华安一中 陈荣辉 ...
更多相关标签:
福建省龙海市    福建省龙海市人民法院    福建省漳州市龙海市    福建省龙海第一中学    福建省龙海市邮编    福建省龙海农药厂    福建省龙海市信鸽协会    福建省龙海市角美镇    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图