9512.net
甜梦文库
当前位置:首页 >> 数学 >>

2016年高考考前适应性训练考试(三)文科答案图片版



秘密★启用前

2016 年第三次高考考前适应性训练试卷 文科数学试题参考答案和评分参考
评分说明: 1.本解答只给出了一种解法供参考,如果考生的解法与本解答不同,可根 据试题的主要考查内容比照评分参考制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未 改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超 过该部分正确解答分数的一半;如果后继部分的解答有较严重的错误,就 不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.

所以函数 f ( x ) 的最小正周期为 T ? 因为

3? ? 2k? , k ?Z 时,函数 f ( x ) 单调递减, 2 6 2 ? 5? 所以函数 f ( x) 的单调递减区间为: [ ? k? , ? k? ] , k ?Z........6 分 3 6 ? ? ? (2)依题知函数 g ( x ) ? 2 sin( 2 x ? ? ) ? 2 sin( 2 x ? ) ,............8 分 2 6 3 ? 2k? ? 2 x ? ? , ] ,所以 2 x ? ? [? , ? ] ,........................................9 分 3 3 3 3 ? ? ? 所以,当 2 x ? ? ,即 x ? 时,函数 g ( x) 取最大值 2 ,.........10 分 3 2 12 ? ? ? 当 2 x ? ? ? ,即 x ? ? 时,函数 g ( x) 取最小值 ? 3 , 3 3 3
因为 x ? [? .......................................................................................................................11 分 综上:函数 g ( x) 在区间 [ ?

?

?

2? ?? , 2

? ?

?

?

第I卷
一.选择题: 题号 答案 1 B 2 A 3 C 4 C 5 B 6 A 7 B 8 C 9 C 10 D 11 B 12 C

第 II 卷
二.填空题: 13、 2 14、 9 : 16 15、

? ?

, ] 上的最大值为 2 ,最小值为 ? 3 . 3 3

?
4

3 9 16、 ( x ? ) 2 ? ( y ? 2 ) 2 ? 2 4

三. 解答题: 17、解: (1)依题可得:

.......................................................................................................................12 分 18、解: (1)证明:连接 AB1 , AC1 ,则 M 为 AB1 中点, 因为 N 分别为 B1C1 的中点,所以 MN // AC1 ,......................................2 分 因为 AC ? 面 ACC1 A1 , MN ? 面 ACC1 A1 ,

f ( x ) ? 2 3 sin x ? cos x ? 2 sin( x ? ? 3 sin 2 x ? sin( 2 x ?

?
4

) ? cos( x ?

?
4

)

所以 MN // 面 ACC1 A1 ..............................................................................4 分
A1 B1 M A B C N C1

?
2

)

? 3 sin 2 x ? cos 2 x

? 2 sin( 2 x ? ) ,..............................................................................4 分 6

?

第 1 页 共 4 页

第 1 页 共 1 页

(2)因为 A1 、 B 、 M 、 N 四点共面,且 M 是 A1 B 的中点, 所以 S ?A BN ? 2 S ?A MN , ................................................................................6 分 1 1 所以 VB1 ? A1 BN ? 2VB1 ? A1MN ? 又 VB ? A BN ? VB ? A B N ? 1 1 1 1 而 S ?A1B1 N ?

将 (1, ) 代入方程中得 ? a 2

3 2

3 ,..............................................................8 分 6

9 ?1 ? ? 2 ? 1, 解得 b ? 3 ,............................3 分 4b ? ? a ? 2,

1 ..............................................10 分 S ?A B N ? BB1 , 3 11

3 ,所以 BB1 ? 1 , 2 即三棱柱 ABC ? A1 B1C1 的高为 1. ..........................................................12 分
19、解: (1)A 型车在本星期内出租天数的方差小于 B 型车在本星期内出租天数 的方差;.........................................................................................................3 分 (2)记事件 M 为“在出租天数为 3 天的汽车中随机抽取一辆,且抽取的 是 A 型车” , 则出租天数为 3 天的汽车共有 13 辆, 其中 A 型车有 13 辆, 所以 P ( M ) ? 所以这辆汽车是 A 型车的概率为

3 13

3 ;......................................................7 分 13 (3)设 A、B 型车在一星期内每辆车出租天数的平均值分别为 x A 、 xB , 3 ? 3 ? 5 ? 4 ? 30 ? 5 ? 7 ? 6 ? 5 ? 7 则 xA ? .................................9 分 ? 5.12 , 50 10 ? 3 ? 10 ? 4 ? 15 ? 5 ? 10 ? 6 ? 5 ? 7 xB ? ? 4.8 ,...........................11 分 50 ∵ x A ? xB ,∴建议应购买 A 型车辆.....................................................12 分
(如考生用方差计算也可以给分) 20、解:

x2 y2 所以椭圆 C 的标准方程 ? ? 1 ......................................................4 分 4 3 (2)证明:设直线 BP 的方程为 y ? k ( x ? 2) , ? y ? k ( x ? 2), ? 由 ? x2 y2 得 (3 ? 4k 2 ) x 2 ? 16k 2 x ? 16k 2 ? 12 ? 0 ,...........5 分 ? ? 1 , ? 3 ? 4 16 k 2 ? xP ? xB ? , 又? xB ? 2 , 3 ? 4k 2 8k 2 ? 6 8k 2 ? 6 ? 12k ? xp ? , 可得 P ( , ) ,................................8 分 3 ? 4k 2 3 ? 4k 2 3 ? 4k 2 1 又? QF1 ? AP , ? k QF ? ? , 1 k 1 ? 3 ? y ? ? ( x ? 1), 由? 得 Q(2,? ) ,...................................................10 分 k k ? ? x ? 2, ? 12k 3 3 ? ? 2 k ? ? 3 ,k ? k ? ? 3 , ∴ k PQ ? 3 ?24k AQ 4 4k 4k 8k ? 6 ? 2 2 3 ? 4k ∴ k PQ ? k AQ ,且有公共点 Q , ? A 、 P 、 Q 三点共线..........................................................................12 分
21、解:

x2 y2 (1)设椭圆的方程为 2 ? 2 ? 1( a ? b ? 0) , a b

b ( x ? ?1) ,......................................................1 分 ( x ? 1) 2 因为曲线 y ? f ( x) 在点 (0, f (0)) 处的切线方程为 2 x ? y ? 1 ? 0 , 所以 f (0) ? ?1, f ?(0) ? 2 ,
(1) f ?( x ) ? a ?
第 2 页 共 4 页 第 1 页 共 3 页

所以 b ? ?1, a ? b ? 2 ,...........................................................................2 分

1 1 则 a ? 1, f ( x) ? x ? , f ?( x ) ? 1 ? ( x ? ?1 ) . x ?1 ( x ? 1) 2 当 x ? ( ??,?1) , ( ?1,??) 时, f ?( x ) ? 0 ,............................................4 分 所以函数 f ( x ) 的单调递增区间为 ( ??,?1) , ( ?1,??) ........................5 分
(2)容易知 f (e x ? 1) ? e x ? e ? x ? 1 , 所以 e x ? e ? x ? 1 ? f (sin x) ? f (e x ? 1) ? f (sin x ) ...........................6 分 由于 x ? [0, ? ] ,所以 e x ? 1 ? 0 , sin x ? 0 , 所以 e x ? 1, sin x ? (?1,??) ,而函数 f ( x ) 在 ( ?1,??) 单调增, 所以 f (e x ? 1) ? f (sin x ) ? e x ? 1 ? sin x ? e x ? sin x ? 1 ? 0 , 构造函数 ? ( x ) ? e x ? sin x ? 1, x ? [0, ? ] ,则 ? ?( x ) ? e x ? cos x ,..8 分 由于 e x ? 1 , cos x ? 1 ,所以 ? ?( x ) ? 0 , 所以 y ? ? ( x ) 在 [0, ? ] 单调增,...............................................................10 分 所以 ? ( x) ? ? (0) ? 0 成立,......................................................................11 分 所以当 x ?[0, ? ] 时, e x ? e ? x ? 1 ? f (sin x) 总成立,证毕...............12 分 22、解: (1)证:? AB 为直径, ? ?ACB ? 90? ,.........................................2 分 又? PF ? BC ,且垂足为 F ,? ?BFP ? 90 ? ,................................3 分

? AE 2 ? BE

2

? AB

2

? 36 ,? AE ?

又?OA ? OB ,OC ? OE ,

6 5 , 5

? BC ? AE ?

6 5 ,................................................................................9 分 5 6 5 2? PA ? BC 5 ? 2 5 ................................10 分 由(1)知, CF ? ? EC 6 5
23、解: (1)直线 l 的普通方程为: x sin? ? y cos? ? sin? ? 0 ................3 分 (2)设 M (1 ? t 1 cos ? , t 1 sin ? ) , N (1 ? t 2 cos ? , t 2 sin ? ) , P ( x , y ) 将?

? x ? 1 ? t cos ? 代入 x 2 ? 6x ? y 2 ? 0 , ? y ? t sin ?

整理的: t 2 ? 4t cos? ? 5 ? 0 ,..............................................................5 分

? ? ? 16cos 2? ? 20 ? 0 , t 1 ? t 2 ? 4 cos ? ,?

t1 ? t 2 ? 2 cos ? , 2

.......................................................................................................................6 分 ? x ? 1 ? 2 cos2 ? ? 2 ? cos2? , y ? 2 cos ? sin ? ? sin 2? ,

? AC // PF ,?

BC BA BC EC ,又 ? AB ? EC ,? .....5 分 ? ? CF PA CF PA
P A E O C B F

(2)连接 BE , ? PE 是⊙ O 的切线,切点为 E , PO 交⊙ O 于点 A , B ,

? x ? 2 ? cos 2? ( ? 为参数, 0 ? ? ? ? ) , ? P 点轨迹的参数方程为 ? ? y ? sin 2?
.......................................................................................................................8 分 所以, P 点轨迹是以 ?2,0 ? 为圆心, 1为半径的圆.............................10 分 24、解: (1)若 a ? 2 ,则 f ( x ) ? 5 等价为: 则 P 点轨迹的普通方程为 ?x ? 2? ? y
2 2

? 1 ,......................................9 分

AE PA PE , ? ?PAE ∽ ?PEB ,? ? ? EB PE PB
.......................................................................6 分 又? PA ? 2, OA ? 3 ,

? PE ? 4 ,?

AE 2 1 ? ? ,..................7 分 EB 4 2 又? AB 为直径, ? ?AEB ? 90 ? ,

? x ? 1, ? 1 ? x ? 2, ? x ? 2, 或? 或? ...............2 分 ? ? ? 2 x ? 3 ? 5, ? x ? 1 ? 2 ? x ? 5, ? x ? 1 ? x ? 2 ? 5, 解得: ? 1 ? x ? 1 ,或 1 ? x ? 2 ,或 2 ? x ? 4 ,...............................4 分

第 3 页 共 4 页 第 1 页 共 2 页

所以,原不等式的解集为 x ? 1 ? x ? 4 ..............................................5 分 (2)如图所示,设函数 f ( x ) 的图象与 函数 y ? 5 的图象围成的梯形为 ABCD ,
y

?

?

y=f ( x) ? ? 2 x ? 1 ? a , x ? 1, ? D C ? f ( x ) ? ? a ? 1, 1 ? x ? a , y=5 ? 2 x ? 1 ? a, x ? a, ? A B ? A (1, a ? 1) , B (a , a ? 1) , x O 1 a 6?a a?4 C( ,5) , D ( ,5) ,..............7 分 2 2 1 ? ? 6 ? a a ? 4 ?? ? S 梯形 ABCD ? ? ??a ? 1? ? ? ? ? ? ?5 ? ?a ? 1?? 2 ? 2 ?? ? 2 ? 2 24 ? 2a ? a ,....................................................................9 分 ? 2 24 ? 2a ? a 2 9 令 ? 解得, a ? 5 或 a ? ?3 , 2 2 ? a ? 1 ,? a ? 5 .....................................................................................10 分

第 4 页 共 4 页 第 1 页 共 1 页



更多相关文章:
2016年高三一模文科数学答案图片版
2016年高三一模文科数学答案图片版_数学_高中教育_教育专区。秘密★启用前 2016 年第一次高考考前适应性训练试卷 文科数学试题参考答案和评分参考评分说明: 1.本...
临汾市2014年高考考前适应性训练考试(三)试题答案(文科...
临汾市2014年高考考前适应性训练考试(三)试题答案(文科)图片版_英语_高中教育_教育专区。第 1 页共 3 页 件的所有可能取法为: ( a, b), ( a, c ), ...
2016届高三考前适应性训练文科综合试卷地理部分(AB卷)_...
陕西·丹凤·商镇︱叶佳 2016 届高三考前适应性训练文科综合试题(A 卷)试卷满分:300 分 考试时间:2016 年 6 月 2 日 9:00—11:30 注意事项: 1.本...
2017年高考考前适应性训练卷 文综(二)教师版_图文
2017年高考考前适应性训练卷 文综(二)教师版_高考_...文科综合试卷第 3 页(共 26 页) 文科综合试卷第...【答案】C A B C D 15.2016 年 9 月 20 日...
2016届宁夏固原市第一中学高三上学期适应性训练(三)文...
2016届宁夏固原市第一中学高三上学期适应性训练(三)文科综合试题(月)_高三政...(9 分) 16 固原一中 2016高考适应性训练试题(月考)答案固原一中文综适应...
2016临汾市文科数学答案第二次考前适应性训练
2016 年第二次高考考前适应性训练试卷 文科数学试题参考答案和评分参考一.选择题: 题号 答案 1 D 2 C 3 B 4 C 5 B 6 D 7 A 8 B 9 B 10 A 11 ...
...一中学高三第八次考前适应性训练语文试题(图片版)
2016届云南省昆明市第一中学高三第八次考前适应性训练语文试题(图片版)_数学_...昆明一中第八期月考语文答案页 8第 第Ⅰ卷 阅读题 甲 必考题 一、现代文...
2016年全国高考文科数学试题及答案-全国卷3
2016年全国高考文科数学试题及答案-全国卷3_高考_...2016 年普通高等学校招生全国统一考试 文科数学正式...
2017年全国卷3文科数学文科综合试题及答案解析
2017年全国卷3文科数学文科综合试题及答案解析_高考_...年普通高等学校招生全国统一考试全国卷 3 文科数学...收集并整理了 2014 年 1 月至 2016 年 12 月...
北京市海淀区2016届高三3适应性训练(零模)文综试题答案
数学先生陪你愉快的冲刺高考 海淀区高三年级第二学期适应性练习文科(零模)综合能力测试 2016.3 本试卷共 12 页,共 300 分。考试时长 150 分钟。考生务必将...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图