9512.net
甜梦文库
当前位置:首页 >> 数学 >>

可行域最优解参赛课件



2、作出不等式组
? x ? 4 y ? ?3 ? ?3 x ? 5 y ? 25 ?x ? 1 ?
A: (5, 2) 5

C

B: (1, 1) C: (1, 4.4) x-4y+3=0

表示的平面区域

B
O
1 x=1

A


5

3x+5y-25=0

x

第二节

可行域上的最优解

y
(5)可行域: 满足约束条 件的所有解 的集合

(1)线性约束条件
A: (5, 2) B: (1, 1) C: (1, 4.4)
x-4y+3=0

5

C

? x ? 4 y ? ?3 ? ?3 x ? 5 y ? 25 ?x ? 1 ?
(4)可行解: 满足约束条 件的解 M(x、y)

M

A
5

B
O
1 x=1 3x+5y-25=0

x

问题: x、y 满足线性约束条件(1) 求:z=2x+y (3)线性规划问题 的最大、小值。

(2)线性目标函数

有关概念
?线性约束条件: ?线性目标函数: ?线性规划问题: ?可行解: ?可行域: ?最优解:

y
A: (5, 2.) B: (1, 1) C: (1, 4.4)
x-4y+3=0

5

C
M

? x ? 4 y ? ?3 ? ?3 x ? 5 y ? 25 ?x ? 1 ?
(6)最优解: A(5、2) Z最大为12

A B
O
1 x=1 5 3x+5y-25=0

x
最优解: B(1、1) Z 最小为3

(4)可行解: 满足约束条 件的解 M(x、y)

l0

l l1 问题1: x、y 满足线性约束条件(1)
求:z=2x+y 的最大、小值。

l2

y
最优解: C(1、4) Z最小为-3
A: (5, 2) B: (1, 1) C: (1, 4.4)
x-4y+3=0

5

C

? x ? 4 y ? ?3 ? ?3 x ? 5 y ? 25 ?x ? 1 ?

A B
O
1 x=1 5 3x+5y-25=0

x

最优解: A(5、2) Z最大为-3

l1 l0

l

l2

问题2: x、y 满足线性约束条件(1) 求:z=x- y 的最大、小值。

[练习]解下列线性规划问题:
1、求z=2x+y的最大值,使式中的x、y满足约束条件:

?y ? x ? ?x ? y ? 1 ? y ? ?1 ?

y
A: (-1, -1) B: (2, -1) C: (0.5, 0.5)

(1)

5

x-y = 0

?y ? x ? ?x ? y ? 1 ? y ? ?1 ?
最优解: B(2、-1) Z最大为3

C
O
1 5

1 2

x
y= -1

A 最优解: A(-1、-1) Z最小为-3

x=1

B l2
x+y =1

l0
l1

问题2: x、y 满足线性约束条件(1) 求:z=2x+y 的最大、小值。

2、求z=3x+5y 的最大值和最小值,使式 中的x、y满足约束条件:

?5 x ? 3 y ? 15 ? ?y ? x ?1 ?x ? 5 y ? 3 ?

5x+3y =15

y

A: (1.5, 2.5)

l2

5

B: (3, 0) C: (-2, -1)

y =x+1

?5 x ? 3 y ? 15 ( 1) ? ?y ? x ?1 ?x ? 5 y ? 3 ?
x-5y= 3

A l0 l1 C
O
1

B
5

x
最优解: A(1.5、2.5) Z最大为17

x=1

最优解: B(-2、-1) Z最小为 -11

问题2: x、y 满足线性约束条件(1) 求:z=3x+5y 的最大、小值。

解线性规划问题的步骤:
(1)画:

可行域,ax+by=0;
(2)移:

移ax+by=0
(3)求:求出最优解(点坐标); (4)答:作出答案。

几个结论:
1、线性目标函数的最大(小)值一般在 可行域的顶点处取得,也可能在边界处 取得。 2、求线性目标函数的最优解,要注意

分析线性目标函数所表示的几何意义 --------与y轴上的截距相关的数。

作业布置



更多相关文章:
线性规划全国获奖课件
条件的解(x,y)叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划 问题的最优解. 2[总结] :图解法解线性规划...
(简单的线性规划问题)说课稿
新丰县第一中学 参赛者: 参赛者: 王燕芹 联系方式...可行解可行域最优解等基本概念; 3、了解简单...【引例】 老师用 PPT 展示题目 某工厂用 A、B ...
线性规划 说课稿(定稿)
教学工具:多媒体课件、实物投影仪、印发准备好的习题纸 多媒体辅助教学的采用: ...3. 作出可行域,并结合图象求出最优解; 4. 按题意作答. 2.实例 2 我省...
二元一次方程组与线性规划强化训练
(a>0) 取得最大值的最优解有无穷多个,则a的值是( ) A. 2 3 B. 1 ...0 ? (3)作出可行域:图略。七彩教育网 全国最新初中、高中试卷、课件、教案...
线性规划说课稿
单的线性规划问题(说课稿... 6页 免费 线性规划课件 26页 免费喜欢...可行域最优解 等概念; 2 理解线性规划问题的图解法; 3 会利用图解法求...
可行域内整点的最优解
可行域内整点的最优解_高二数学_数学_高中教育_教育专区。可行域内整点的最优...可行域最优解参赛课件 暂无评价 14页 免费 线性规划中最优整点解的... 2页...
运筹学课件第五章整数规划
运筹学课件第五章整数规划_理学_高等教育_教育专区。运筹学 课件第...将原问题的整数最优解逐渐暴露且趋于可行域极点的位置,这样就有可能用单纯形法...
可行域上的最优解
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 ...可行域上的最优解 暂无评价 15页 1下载券 1.2线性规划的可行域与最... 19...
(简单的线性规划问题)说课稿
可行解可行域最优解等基本概念; 3、了解简单线性规划实际问题的建模方法...教师引导学生设元,设出目 实现数形结合,然后 标函数: 借助多媒体课件展示 ...
二元一次不等式(组)与简单的线性规划问题(说课稿)
对于这些数据要事先设计好并在课件的坐标系中标出备用) (教师对引例中给出的...师,介绍线性规划、线性约束条件、线性目标函数、可行解可行域最优解 等概念...
更多相关标签:
可行解和最优解    参赛团队的资源可行性    参赛课件 课件简介    1米有多长参赛课件    童年趣事参赛课件    参赛化学说题课件    古诗鉴赏参赛课件    环保参赛课件    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图