9512.net
甜梦文库
当前位置:首页 >> 高三数学 >>

2015年高考数学真题分类汇编2 -函数



2015 年高考数学真题分类汇编 2-函数
1.(15 年北京理科)如图,函数 f ? x ? 的图象为折线 ACB ,则不等式 f ? x ? ≥ log2 ? x ? 1? 的解集是
y 2 C

A -1

O

B 2

x

A. ?x | ?1 ? x ≤ 0? C. ?x | ?1 ? x ≤1? 【答案】C 【解析】

B. ?x | ?1 ≤ x ≤1? D. ?x | ?1 ? x ≤ 2?

考点:1.函数图象;2.解不等式. 2.(15 年北京理科)汽车的“燃油效率”是指汽车每消耗 1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车 在不同速度下的燃油效率情况. 下列叙述中正确的是

A.消耗 1 升汽油,乙车最多可行驶 5 千米 B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以 80 千米/小时的速度行驶 1 小时,消耗 10 升汽油 D.某城市机动车最高限速 80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】 【解析】 试题分析:“燃油效率”是指汽车每消耗 1 升汽油行驶的里程,A 中乙车消耗 1 升汽油,最多行驶的路程为 乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以 80 千米/小时的速度行驶 1 小时,甲车每消耗 1 升汽油行驶的里程 10km,行驶 80km,消 耗 8 升汽油,C 错误,D 中某城市机动车最高限速 80 千米/小时. 由于丙比乙的燃油效率高,相同条件下, 在该市用丙车比用乙车更省油,选 D. 考点:1.函数应用问题;2.对“燃油效率”新定义的理解;3.对图象的理解.

? 2x ? a ? x ? 1? ? 3.(15 年北京理科)设函数 f ? x ? ? ? ? ?4 ? x ? a ?? x ? 2a ? ? x ≥1.
① 若 a ? 1 ,则 f ? x ? 的最小值为 ; .

② 若 f ? x ? 恰有 2 个零点,则实数 a 的取值范围是

【答案】(1)1,(2)

1 ? a ? 1或a ? 2 . 2

考点:1.函数的图象;2.函数的零点;3.分类讨论思想. 4.(15 年北京文科)下列函数中为偶函数的是( A. y ? x sin x
2

) C. y ? ln x D. y ? 2
?x

B. y ? x cos x
2

【答案】B 【解析】 试题分析:根据偶函数的定义 f (? x) ? f ( x) ,A 选项为奇函数,B 选项为偶函数,C 选项定义域为 (0, ??) 不 具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选 B. 考点:函数的奇偶性. 5.(15 年北京文科) 2 , 3 , log 2 5 三个数中最大数的是 【答案】 log 2 5 【解析】
?3
1 2



试题分析: 2?3 ? 考点:比较大小.

1 1 ? 1 , 3 2 ? 3 ? 1 , log 2 5 ? log 2 4 ? 2 ? 3 ,所以 log 2 5 最大. 8

6.(15 年广东理科)下列函数中,既不是奇函数,也不是偶函数的是 A. y ? x ? e x 【答案】 A . 【解析】 令 f ? x ? ? x ? ex , 则 f ?1? ? 1 ? e , f ? ?1? ? ?1 ? e?1 即 f ? ?1? ? f ?1? , f ? ?1? ? ? f ?1? , 所以 y ? x ? ex 既不是奇函数也不是偶函数,而 BCD 依次是奇函数、偶函数、偶函数,故选 A . 【考点定位】本题考查函数的奇偶性,属于容易题. 7.(15 年广东理科)设 a ? 1 ,函数 f ( x) ? (1 ? x2 )e x ? a 。 (1) 求 f ( x) 的单调区间 ; (2) 证明: f ( x) 在 ? ??, ??? 上仅有一个零点; (3) 若曲线 y = f ( x) 在点 P 处的切线与 x 轴平行, 且在点 M (m, n) 处的切线与直线 OP 平行 ( O 是坐标原点) , 证明: m ? 3 a ? B. y ? x ?

1 x

C. y ? 2 ?
x

1 2x

D. y ? 1 ? x 2

2 ?1. e

【答案】 (1) ? ??, ?? ? ; (2)见解析; (3)见解析.
2 x 2 【解析】 (1)依题 f ' ? x ? ? 1 ? x ' e ? 1 ? x

?

?

?

?? e ? ' ? ?1 ? x ?
x

2

ex ? 0 ,

∴ f ? x ? 在 ? ??, ?? ? 上是单调增函数;

【考点定位】本题考查导数与函数单调性、零点、不等式等知识,属于中高档题. 8.(15 年广东文科)下列函数中,既不是奇函数,也不是偶函数的是( A. y ? x ? sin x
2



B. y ? x ? cos x
2

C. y ? 2 x ?

1 2x

D. y ? x ? sin 2 x

【答案】A 【解析】 试题分析:函数 f ? x ? ? x ? sin x 的定义域为 R ,关于原点对称,因为 f ?1? ? 1 ? sin1 , f ? ? x ? ? 1 ? sin1 ,
2

所以函数 f ? x ? ? x ? sin x 既不是奇函数,也不是偶函数;函数 f ? x ? ? x ? cos x 的定义域为 R ,关于原点对
2 2

称,因为 f ? ? x ? ? ? ? x ? ? cos ? ? x ? ? x 2 ? cos x ? f ? x ? ,所以函数 f ? x ? ? x ? cos x 是偶函数;函数
2

2

1 1 1 的定义域为 R ,关于原点对称,因为 f ? ? x ? ? 2? x ? ? x ? x ? 2 x ? f ? x ? ,所以函数 x 2 2 2 1 f ? x ? ? 2 x ? x 是偶函数;函数 f ? x ? ? x ? sin 2 x 的定义域为 R ,关于原点对称,因为 2 f ? x ? ? 2x ?

f ? ? x ? ? ? x ? sin ? ?2 x ? ? ? x ? sin 2 x ? ? f ? x ? ,所以函数 f ? x ? ? x ? sin 2 x 是奇函数.故选 A.
考点:函数的奇偶性. 4.9.(15 年安徽文科)下列函数中,既是偶函数又存在零点的是( (A)y=lnx 【答案】D (B) y ? x2 ? 1 (C)y=sinx ) (D)y=cosx

考点:1.函数的奇偶性;2.零点. 10.10.(15 年安徽文科)函数 f ? x ? ? ax ? bx ? cx ? d 的图像如图所示,则下列结论成立的是(
3 2

)

(A)a>0,b<0,c>0,d>0 (B)a>0,b<0,c<0,d>0 (C)a<0,b<0,c<0,d>0 (D)a>0,b>0,c>0,d<0

【答案】A

考点:函数图象与性质.

[学优高考网]

11.(15 年安徽文科) lg 【答案】-1 【解析】

5 1 ? 2 lg 2 ? ( ) ?1 ? 2 2



试题分析:原式= lg 5 ? lg 2 ? 2 lg? 2 ? lg 5 ? lg 2 ? 2 ? 1 ? 2 ? ?1 考点:1.指数幂运算;2.对数运算. 12. (15 年安徽文科)在平面直角坐标系 xOy 中,若直线 y ? 2a 与函数 y ?| x ? a | ?1 的图像只有一个交点, 则 a 的值为 【答案】 ? 【解析】 试题分析:在同一直角坐株系内,作出 y ? 2a与y ? x ? a ? 1 的大致图像,如下图:由题意,可知 。

1 2

2a ? ?1 ? a ? ?

1 2

考点:函数与方程. 13.(15 年福建理科)下列函数为奇函数的是( A. y ? 【答案】D )

x B. y ? sin x C. y ? cos x D. y ? ex ? e? x

考 点:函数的奇偶性. 14.(15 年福建理科)若函数 f ? x ? ? ? 取值范围是 【答案】 (1, 2] .

?? x ? 6, x ? 2, ( a ? 0 且 a ? 1 )的值域是 ? 4, ??? ,则实数 a 的 3 ? log x , x ? 2, a ?

考点:分段函数求值域. 15.(15 年福建文科)下列函数为奇函数的是( A. y ? 【答案】D 【解析】 试题分析:函数 y ? )

x

B. y ? e x C. y ? cos x D. y ? e x ? e? x

x 和 y ? ex 是非奇非偶函数; y ? cos x 是偶函数; y ? ex ? e? x 是奇函数,故选 D.

考点:函数的奇偶性. 16.(15 年福建文科)若函数 f ( x) ? 2 实数 m 的最小值等于_______. 【答案】 1 【解析】 试题分析:由 f (1 ? x) ? f (1 ? x) 得函数 f ( x ) 关于 x ? 1 对称,故 a ? 1 ,则 f ( x) ? 2 得 f ( x ) 在 [1, ??) 递增,故 m ? 1 ,所以实数 m 的最小值等于 1 . 考点:函数的图象与性质. 17.(15 年新课标 1 理科)若函数 f(x)=xln(x+ a ? x2 )为偶函数,则 a=
x ?1 x ?a

(a ? R) 满足 f (1 ? x) ? f (1 ? x) ,且 f ( x) 在 [m, ??) 单调递增,则

,由复合函数单调性

【答案】1 【解析】由题知 y ? ln( x ? a ? x 2 ) 是奇函数,所以 ln( x ? a ? x2 ) ? ln(? x ? a ? x 2 ) = ln(a ? x2 ? x2 ) ? ln a ? 0 ,解得 a =1.
18.(15 年新课标 2 理科)设函数 f ( x) ? ? (A)3 【答案】C 【解析】由已知得 f (?2) ? 1 ? log 2 4 ? 3 ,又 log 2 12 ? 1 ,所以 f (log 2 12) ? 2log 2 12?1 ? 2log 2 6 ? 6 ,故 (B)6 (C)9

?1 ? log 2 (2 ? x), x ? 1,
x ?1 ?2 , x ? 1,

, f (?2) ? f (log 2 12) ? (

)

(D)12

f (?2) ? f (log 2 12) ? 9 .
19.(15 年新课标 2 理科)如图,长方形 ABCD 的边 AB=2,BC=1,O 是 AB 的中点,点 P 沿着边 BC,CD 与 DA 运动,记∠BOP=x.将动点 P 到 A、B 两点距离之和表示为 x 的函数 f(x) ,则 f(x)的图像大致为

【答案】B

的运动过程可以 看出,轨迹关于直线 x ?

?
2

对称,且 f ( ) ? f ( ) ,且轨迹非线型,故选 B.

?

?

4

2

20.(15 年新课标 2 文科)如图,长方形的边 AB=2,BC=1,O 是 AB 的中点,点 P 沿着边 BC,CD 与 DA 运动,记

?BOP ? x ,将动点 P 到 A,B 两点距离之和表示为 x 的函数 f ? x ? ,则的图像大致为(



A.

B.

C.

D.

【答案】B

考点:函数图像 21.(15 年新课标 2 文科)设函数 f ( x) ? ln(1? | x |) ? ( )

1 ,则使得 f ( x) ? f (2 x ? 1) 成立的 x 的取值范围是 1 ? x2

A. ? ,1? 【答案】A 【解析】

?1 ? ?3 ?

B. ? ??, ?

? ?

1? 3?

?1, ?? ?

C. ? ? , ?

? 1 1? ? 3 3?

D. ? ??, ? ?

? ?

1? ?1 ? ? , ?? ? 3? ? 3 ?

试题分析:由 f ( x) ? ln(1? | x |) ?

1 可知 f ? x ? 是偶函数,且在 ?0, ??? 是增函数,所以 1 ? x2 1 f ? x ? ? f ? 2 x ? 1? ? f ? x ? ? f ? 2 x ? 1 ? ? x ? 2 x ? 1 ? ? x ? 1 .故选 A. 3

考点:函数性质 22.(15 年新课标 2 文科)已知函数 f ? x ? ? ax ? 2x 的图像过点(-1,4),则 a=
3



【答案】-2 【解析】 试题分析:由 f ? x ? ? ax ? 2x 可得 f ? ?1? ? ?a ? 2 ? 4 ? a ? ?2 .
3

考点:函数解析式 23.(15 年陕西文科)设 f ( x) ? ? A. ? 1 B.

? ?1 ? x , x ? 0 ,则 f ( f (?2)) ? ( x 2 , x ? 0 ? ?
3 2



1 4

C.

1 2

D.

【答案】 C

考点:1.分段函数;2.函数求值. 24.(15 年陕西文科)设 f ( x) ? x ? sin x ,则 f ( x) ? ( A.既是奇函数又是减函数 C.是有零点的减函数 【答案】 B 【解析】 试题分析: f ( x) ? x ? sin x ? f (? x) ? (? x) ? sin(? x) ? ? x ? sin x ? ?( x ? sin x) ? ? f ( x) 又 f ( x ) 的定义域为 R 是关于原点对称,所以 f ( x ) 是奇函数; B.既是奇函数又是增函数 D.是没有零点的奇函数 )

f ?( x) ? 1 ? cos x ? 0 ? f ( x) 是增函数.
故答案选 B 考点:函数的性质. 25.(15 年陕西文科)设 f ( x) ? ln x,0 ? a ? b ,若 p ? f ( ab ) , q ? f ( 列关系式中正确的是( A. q ? r ? p 【答案】 C ) C. p ? r ? q D. p ? r ? q

a?b 1 ) , r ? ( f (a ) ? f (b)) ,则下 2 2

B. q ? r ? p

【解析】

1 a?b a?b 1 1 ln ab ; q ? f ( ) ? ln ; r ? ( f (a) ? f (b)) ? ln ab 2 2 2 2 2 a?b a?b ? ab ,由 f ( x) ? ln x 是个递增函数, f ( ) ? f ( ab ) 因为 2 2
试题分析: p ? f ( ab ) ? ln ab ? 所以 q ? p ? r ,故答案选 C 考点:函数单调性的应用. 26. ( 15 年 天 津 理 科 ) 已 知 定 义 在 R 上 的 函 数 f ? x? ? 2
x?m

?1 ( m 为 实 数 ) 为 偶 函 数 , 记

a ? f (log0.5 3), b ? f ?log2 5? , c ? f ? 2m? ,则 a, b, c 的大小关系为
(A) a ? b ? c (B) a ? c ? b (C) c ? a ? b (D) c ? b ? a 【答案】C 【解析】 试题分析:因为函数 f ? x ? ? 2
x ?m

? 1为偶函数,所以 m ? 0 ,即 f ? x ? ? 2 ? 1 ,所以
x
1

log2 1? ? a ? f (log0.5 3) ? f ? log2 ? ? 2 3 ? 1 ? 2log2 3 ? 1 ? 3 ? 1 ? 2, 3? ?

b ? f ?log2 5? ? 2log2 5 ? 1 ? 4, c ? f ? 2m? ? f (0) ? 20 ? 1 ? 0
所以 c ? a ? b ,故选 C. 考点:1.函数奇偶性;2.指数式、对数式的运算. 27.(15 年天津理科)已知函数 f ? x ? ? ?

? ?2 ? x , x ? 2, ? ?? x ? 2 ? , x ? 2,
2

函数 g ? x ? ? b ? f ? 2 ? x ? ,其中 b ? R ,若函数

y ? f ? x ? ? g ? x ? 恰有 4 个零点,则 b 的取值范围是
(A) ?

7? ?7 ? ? ? 7? ?7 ? , ?? ? (B) ? ??, ? (C) ? 0, ? (D) ? , 2 ? 4? ?4 ? ? ? 4? ?4 ?

【答案】D 【解析】 试题分析:由 f ? x ? ? ?

? ?2 ? x , x ? 2, ? ?? x ? 2 ? , x ? 2,
2

得 f (2 ? x ) ? ?

? ?2 ? 2 ? x , x ? 0 , 2 x , x ? 0 ? ?

?2 ? x ? x 2 , x?0 ? 所以 y ? f ( x ) ? f (2 ? x ) ? ?4 ? x ? 2 ? x , 0? x ? 2, ? 2 ?2 ? 2 ? x ? ( x ? 2) , x ? 2

? x 2 ? x ? 2, x ? 0 ? 0? x?2 即 y ? f ( x ) ? f (2 ? x ) ? ?2, ? x 2 ? 5 x ? 8, x ? 2 ?
y ? f ( x) ? g ( x) ? f ( x) ? f (2 ? x) ? b ,所以 y ? f ? x ? ? g ? x ? 恰有 4 个零点等价于方程 f ( x) ? f (2 ? x) ? b ? 0 有 4 个不同的解,即函数 y ? b 与函数 y ? f ( x) ? f (2 ? x) 的图象的 4 个公共点,由
图象可知

7 ? b? 2. 4
8 6 4 2

15

10

5 2 4 6 8

5

10

15

考点:1.求函数解析式;2.函数与方程;3.数形结合. 28.(15 年天津理科)曲线 y ? x 【答案】 【解析】 试题分析:两曲线的交点坐标为 (0,0),(1,1) ,所以它们所围成的封闭图形的面积
2

与直线 y ? x 所围成的封闭图形的面积为

.

1 6

1 ? 1 ?1 S ? ? ? x ? x ? dx ? ? x 2 ? x 3 ? ? . 0 3 ?0 6 ?2
1 2

1

考点:定积分几何意义. 29. ( 15 年 天 津 文 科 ) 已 知 定 义 在 R 上 的 函 数 f ( x) = 2
| x - m|

- 1(m为实数) 为 偶 函 数 , 记

a = f (log0.5 3), b = f (log2 5),c = f (2m) ,则 a, b, c ,的大小关系为(
(A) a < b < c 【答案】B 【解析】 (B) c < a < b (C) a < c < b



(D) c < b < a

试题分析:由 f ? x ? 为偶函数得 m ? 0 ,所以 a ? 2, b ? 4, c ? 0 ,故选 B.

考点:1.函数奇偶性;2.对数运算. 30. (15 年天津文科) 已知函数 f ( x) = í 的个数为 (A) 2 【答案】A

ì 2- | x |, x 2 ? ,函数 g ( x) = 3 - f (2 - x) ,则函数 y = f ( x) - g ( x) 的零点 2 ? ( x - 2) , x > 2 ?
(D)5

(B) 3

(C)4

考点:函数与方程. 31.(15 年湖南理科)设函数 f ( x) ? ln(1 ? x) ? ln(1 ? x) ,则 f ( x ) 是( A.奇函数,且在 (0,1) 上是增函数 C. 偶函数,且在 (0,1) 上是增函数 【答案】A. 【解析】 试题分析:显然, f ( x) 定义域为 (?1,1) ,关于原点对称,又∵ f (? x) ? ln( 1 ? x) ? ln(1 ? x) ? ? f ( x) ,∴ f ( x) B. 奇函数,且在 (0,1) 上是减函数 D. 偶函数,且在 (0,1) 上是减函数 )

32.(15 年湖南理科)已知 f ( x) ? ? 值范围 是

? x3 , x ? a
2 ?x , x ? a

,若存在实数 b ,使函数 g ( x) ? f ( x) ? b 有两个零点,则 a 的取

.

【答案】 (??,0) ? (1,??) . 【解析】 试题分析:分析题意可知,问题等价于方程 x ? b( x ? a) 与方程 x ? b( x ? a) 的根的个数和为 2 ,
3 2

? 1 3 ?b ? a ? 若两个方程各有一个根:则可知关于 b 的不等式组 ? b ? a 有解,从而 a ? 1 ; ? ?? b ? a ?
? 1 ? 3 若方程 x ? b( x ? a) 无解,方程 x ? b( x ? a) 有 2 个根:则可知关于 b 的不等式组 ?b ? a 有解,从而 ? ?? b ? a
3 2

a ? 0; ,综上,实数 a 的取值范围是 (??,0) ? (1,??) .
考点:1.函数与方程;2.分类讨论的数学思想. 33.(15 年山东理科)要得到函数 y ? sin(4 x ? (A)向左平移

?
3

) 的图象,只需将函数 y ? sin 4 x 的图像

?

12 12 ? ? (C)向左平移 个单位 (D) 向右平移 个单位 3 3 ? ? 解析: y ? sin 4( x ? ) ,只需将函数 y ? sin 4 x 的图像向右平移 个单位答案选(B) 12 12
34.(15 年山东理科)设函数 f ( x) ? ? (A) [ ,1] 解析:由 f ( f (a)) ? 2
f (a)

个单位

(B) 向右平移

?

个单位

? 3x ? 1, x ? 1, 则满足 f ( f (a)) ? 2 f ( a ) 的取值范围是 x 2 , x ? 1. ?
(C) [ , ??)

2 3

(B) [0,1] 可知 f (a) ? 1 ,则 ?

2 3

(D) [1, ??)

? a ? 1 ?a ? 1 2 或? ,解得 a ? ,答案选(C) a 3 ?2 ? 1 ?3a ? 1 ? 1

x 35.(15 年山东理科)已知函数 f ( x) ? a ? b (a ? 0, a ? 1) 的定义域

和值域都是 [?1,0] ,则 a ? b ?

.

?a ?1 ? b ? ?1 解析:当 a ? 1 时 ? 0 ,无解; ?a ?b ? 0
当 0 ? a ? 1时 ? 则a?b ?

? a ?1 ? b ? 0 1 ,解得 b ? ?2, a ? , 0 2 ?a ? b ? ?1

1 3 ?2? ? . 2 2

36.(15 年江苏)已知函数 f ( x) ?| ln x | , g ( x) ? ?

? 0,0 ? x ? 1 ,则方程 | f ( x) ? g ( x) |? 1 实根的个数为 2 ?| x ? 4 | ?2, x ? 1

【答案】4

考 点:函数与方程



更多相关文章:
22份打包】2015年高考数学真题分类(分项)汇编_图文
3 专题 函数 ... 7 专题三 三角函数 ......
2015年高考数学真题分类汇编:专题10 立体几何 (2)
若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆 锥与圆柱各一个,则新的底面半径为 19.【2015 高考新课标 2,理 19】 (本题满分 12 分...
2015年高考数学真题分类汇编:专题10 立体几何 Word版...
? ??? ? 据向量数量积求二面角余弦值(2)先建立直线 CQ 与 DP 所成角的函数关系式:设 BQ ? ? BP , ??? ? ??? ? 则 cos ? CQ, DP ?? 1 ? ...
2015年高考真题分类汇编——解析几何大题
椭圆的定义;3.函数与方程思想. x2 y 2 27、 (2015 重庆理 21)如题 (21) 图, 椭圆 2 ? 2 ? 1? a ? b ? 0 ? 的左、 右焦点分别为 F1 , F2...
2015年高考数学试题分类汇编常用逻辑用语
2015年高考数学试题分类汇编常用逻辑用语_高考_高中教育_教育专区。题十一 常用逻辑用语 1.(15 北京理科)设 ? , ? 是两个不同的平面, m 是直线且 m? ? ....
2015年高考数学(理)真题分类汇编:专题11 排列组合、二...
7.【2015 高考广东,理 9】在 ( x ? 1) 4 的展开式中, x 的系数为 【答案】 6 . 【解析】由题可知 Tr ?1 ? C4 r . ? ? x 2 4? r ? ?1...
2015年高考真题分类汇编(一)---矩阵与变换
2015年高考真题分类汇编(一)---矩阵与变换_高考_高中教育_教育专区。专题十一 矩阵与变换骣 骣 2 1 1 1 ,B =琪 . 琪 4 3 0 -1 桫桫 1.(15 ...
2015年高考数学真题分类汇编1 -集合_图文
2015年高考数学真题分类汇编1 -集合_高三数学_数学_高中教育_教育专区。2015年高考数学真题分类汇编1 -集合 2015 年高考数学真题分类汇编 1-集合 1.(15 年北京...
2015年高考数学真题分类汇编:专题 直线与圆 Word版含解析
【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方 程与圆的方程联立, 消元, 得到关于 x(或 y ) 的一元二次方程, 通过...
2010—2015年高考必修2试题分类汇编
2010—2014 年高考试题分类汇编(2)必修、 《遗传与进化》 第一章、遗传因子的发现 遗传的基本规律 一、选择题 1、 (10 北京卷)4.决定小鼠毛色为黑(B)/...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图