9512.net
甜梦文库
当前位置:首页 >> 数学 >>

专题五 函数的周期性


专题五
一、定义

函数的周期性

二、结论: 1. 若对 f(x)定义域内的任意 x,恒有下列条件之一成立: ①f(x+a)=-f(x) ②f(x+a)=

1 f (x) f ( x ) +1 f ( x )- 1

③f(x+a)= -

1 f (x)

④f(x+a)= f(x-a)

⑤f(x+a)=

⑥f(x+a)=

1-f ( x ) 1+ f ( x )

则 f(x)是周期函数,____________是它的一个周期。 2.若 f(x)同时关于直线 x=a 与直线 x=b 对称(a<b),则 f(x)是周期函数,____________是 它的一个周期,若 f(x)关于直线 x=a 对称同时关于点(b,0)对称(b≠a) ,则 f(x)是周期函 数,____________是它的一个周期,若 f(x)关于点(a,0)对称同时关于点(b,0)对称(b ≠a) ,则 f(x)是周期函数,____________是它的一个周期。

三、应用 例 1.设函数 f(x)(x∈R)是以 3 为周期的奇函数,且 f(1)>1,f(2)=a,则( A.a>2 B.a<-2 C.a>1 D.a<-1



例 2.设 f(x)是(-∞,+∞)上的奇函数,f(x+2)= -f(x),当 0≤x≤1 时,f(x)=x,则 f(7.5)等于( ) A.0.5 B.-0.5 C.1.5 D.-1.5

例 3. 已知函数f(x)满足: f(1)=

1 , 4f(x) .f(y)=f(x+y)+f(x-y) (x, y∈R), 则( f 2014) =________。 4

例 4.在数列{ an }中, a1 =

1 1 , an +1 =1- ,则 a2014 =________。 2 an

例 5.设 f(x)是定义域在 R 上的偶函数,其图象关于直线 x=1 对称,对任意 x 1 , x 2 ∈[0,

1 ]都有 f( x 1 + x 2 )=f( x 1 ).f( x 2 )。 2 1 1 (1) 设 f(1)=2,求 f( )、f( )的值。 2 4
(2) 证明:函数 f(x)是周期函数。

例 6. 已知函数 f(x)是 (-∞, +∞) 上的奇函数, 且 f(x)图象关于直线 x=1 对称, 当 x∈[0,1] 时,f(x)= 2 -1. (1) 求证:f(x)是周期函数。 (2) 当 x∈[1,2]时,求 f(x)的解析式。 (3) 计算 f(0)+f(1)+f(2)+f(3)+ …+f(2014)的值。
x

四、作业 1.f(x)(x∈R)是以 5 为周期的奇函数,且满足 f(1)=1,f(2)=2,则 f(3)-f(4)=__________。 2.已知定义在R上的奇函数f(x)满足 f(x+2)= -f(x),则 f(6)的值为( A.-1 B.0 C.1 D.2 )

3.已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x<2 时,f(x)= x -x ,则函数 y=f(x)的图象在区间[ 0,6 ]上与 x 轴的交点个数为( ) A.6 B.7 C.8 D.9 4.在数列{ an }中, a1 =1, a2 =5, an +2 = an +1 - an (n∈ N + ) ,则 a2014 =__________。

3

5.f(x)是定义在 R 上的奇函数,且满足 f(x+2)= f(x),又当 x∈(0,1)时,f(x)= 2 -1,求

x

f (log 1 6 ) 的值。
2


赞助商链接

更多相关文章:
2015高考复习专题五_函数与导数_近年高考试题_图文
2015高考复习专题五_函数与导数_近年高考试题_数学_高中教育_教育专区。函数与...考点二:判断函数单调性,求函数的单调区间。 ) B.-3 D.-2 [典例 1]已知...
专题五:正弦函数、余弦函数的图像与性质
专题五:正弦函数、余弦函数的图像与性质_高一数学_数学_高中教育_教育专区。正弦...A cos(?x ? ? ) 的最小正周期为: ☆3.利用三角函数有界性求值域.( ...
...2018年高考数学理科总复习高考达标检测(5)函数的单...
【高考专题】2018年高考数学理科总复习高考达标检测(5)函数的单调性 - 高考达标检测(五) 函数的单调性、奇偶性及周期性 一、选择题 1 .(2017·沈阳教学质量...
浙教版2018中考复习知识点+练习专题五:函数的图像与性质
浙教版2018中考复习知识点+练习专题五:函数的图像与性质_中考_初中教育_教育专区...;若不在此范围内,则需要考虑函数在 x 1 ? x ? x 2 范围内的增减性,如...
二次函数专题五:二次函数性质知识点归纳
函数 图象开口方向 轴 坐标 函数最大 (小)值 函数值增减 (性) 图例 a>0 向上 y=a(x-h)2+k a<0 向下 杭州育才中学初三数学备课组(钟亮) 2 五、y=...
山东省枣庄市2018中考数学总复习聚焦枣庄专题五函数压...
山东省枣庄市2018中考数学总复习聚焦枣庄专题五函数压轴题试题 - 专题五 函数压轴题 类型一 动点函数图象问题 此类问题一般是通过分析动点在几何图形边上的运动情况,...
专题5__导数的应用-含参函数的单调性讨论(答案)
专题 5〗 导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来 的高考...
专题函数概念与基本初等函数 第五讲函数与方程答案
专题二 函数概念与基本初等函数Ⅰ 第五讲 函数与...0) 其他交点横坐标均为无理数, 属于每个周期 x ...专题函数的概念与性... 暂无评价 4页 1下载...
初高中数学衔接知识点专题(五)
初高中数学衔接知识点专题(五) - 初高中数学衔接知识点专题(五) ★ 专题五 二次函数 【要点回顾】 1. 二次函数 y=ax2+bx+c 的图像和性质 问题[1] 函数...
2011年高考数学难点、重点突破精讲精练专题五-函数的概...
专题05 函数的概念及其性质 【名师导航】 函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的 定义域、解析式、值域是高考考查重点...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图