9512.net
甜梦文库
当前位置:首页 >> 数学 >>

【步步高】2014-2015学年高中数学 第二章 2.2等差数列(二)导学案新人教A版必修5



§2.2

等差数列(二)

课时目标 1.进一步熟练掌握等差数列的通项公式. 2.熟练运用等差数列的常用性质. 1.等差数列的通项公式 an=a1+(n-1)d,当 d=0 时,an 是关于 n 的常函数;当 d≠0 时,an 是关于 n 的一次函数;点(n,an)分布在以 d 为斜率的直线上,是这条直线上的一列 孤立的点. am-an

2.已知在公差为 d 的等差数列{an}中的第 m 项 am 和第 n 项 an(m≠n),则 =d. m-n 3.对于任意的正整数 m、n、p、q,若 m+n=p+q.则在等差数列{an}中,am+an 与 ap+aq 之间的关系为 am+an=ap+aq.

一、选择题 1 1.在等差数列{an}中,若 a2+a4+a6+a8+a10=80,则 a7- a8 的值为( ) 2 A.4 B.6 C.8 D.10 答案 C 解析 由 a2+a4+a6+a8+a10=5a6=80, 1 1 ∴a6=16,∴a7- a8= (2a7-a8) 2 2 1 1 = (a6+a8-a8)= a6=8. 2 2 2.已知数列{an}为等差数列且 a1+a7+a13=4π ,则 tan(a2+a12)的值为( ) A. 3 B.± 3 3 C.- D.- 3 3 答案 D 解析 由等差数列的性质得 a1+a7+a13=3a7=4π , 4π ∴a7= . 3 8π ∴tan(a2+a12)=tan(2a7)=tan 3 2π =tan =- 3. 3 3. 已知等差数列{an}的公差为 d(d≠0), 且 a3+a6+a10+a13=32, 若 am=8, 则 m 为( ) A.12 B.8 C.6 D.4 答案 B 解析 由等差数列性质 a3+a6+a10+a13=(a3+a13)+(a6+a10)=2a8+2a8=4a8=32, ∴a8=8,又 d≠0, ∴m=8. 4.如果等差数列{an}中,a3+a4+a5=12,那么 a1+a2+…+a7 等于( )
1

A.14 B.21 C.28 D.35 答案 C 解析 ∵a3+a4+a5=3a4=12, ∴a4=4.∴a1+a2+a3+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+a4=7a4=28. 5.设公差为-2 的等差数列{an},如果 a1+a4+a7+…+a97=50,那么 a3+a6+a9+… +a99 等于( ) A.-182 B.-78 C.-148 D.-82 答案 D 解析 a3+a6+a9+…+a99 =(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d) =(a1+a4+…+a97)+2d×33 =50+2×(-2)×33 =-82. 6.若数列{an}为等差数列,ap=q,aq=p(p≠q),则 ap+q 为( ) A.p+q B.0 p+q C.-(p+q) D. 2 答案 B ap-aq q-p 解析 ∵d= = =-1, p-q p-q ∴ap+q=ap+qd=q+q×(-1)=0. 二、填空题 7.若{an}是等差数列,a15=8,a60=20,则 a75=________. 答案 24 4 解析 ∵a60=a15+45d,∴d= , 15 ∴a75=a60+15d=20+4=24. 8.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则 a20=________. 答案 1 解析 ∵a1+a3+a5=105,∴3a3=105,a3=35. ∴a2+a4+a6=3a4=99. ∴a4=33,∴d=a4-a3=-2. ∴a20=a4+16d=33+16×(-2)=1. ?1? 9.已知? ?是等差数列,且 a4=6,a6=4,则 a10=______.
?an?

12 答案 5 1 1 1 1 1 解析 - = - =2d,即 d= . a6 a4 4 6 24 1 1 1 1 5 12 所以 = +4d= + = ,所以 a10= . a10 a6 4 6 12 5 1 2 2 10.已知方程(x -2x+m)(x -2x+n)=0 的四个根组成一个首项为 的等差数列,则 4 |m-n|=________. 1 答案 2 1 1 1 1 解析 由题意设这 4 个根为 , +d, +2d, +3d. 4 4 4 4
2

1 ?1 1 1 3 5 7 ? 则 +? +3d?=2,∴d= ,∴这 4 个根依次为 , , , , 4 ?4 2 4 4 4 4 ? 1 7 7 ∴n= × = , 4 4 16 3 5 15 15 7 m= × = 或 n= ,m= , 4 4 16 16 16 1 ∴|m-n|= . 2 三、解答题 11.等差数列{an}的公差 d≠0,试比较 a4a9 与 a6a7 的大小. 解 设 an=a1+(n-1)d, 则 a4a9-a6a7=(a1+3d)(a1+8d)-(a1+5d)(a1+6d) 2 2 2 2 =(a1+11a1d+24d )-(a1+11a1d+30d ) 2 =-6d <0,所以 a4a9<a6a7. 12.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式. 解 ∵a1+a7=2a4,a1+a4+a7=3a4=15, ∴a4=5. 又∵a2a4a6=45,∴a2a6=9, 即(a4-2d)(a4+2d)=9,(5-2d)(5+2d)=9,解得 d=±2. 若 d=2,an=a4+(n-4)d=2n-3; 若 d=-2,an=a4+(n-4)d=13-2n. 能力提升 13.在 3 与 27 之间插入 7 个数,使这 9 个数成等差数列,则插入这 7 个数中的第 4 个 数值为( ) A.18 B.9 C.12 D.15 答案 D 解析 设这 7 个数分别为 a1,a2,…,a7, 公差为 d,则 27=3+8d,d=3. 故 a4=3+4×3=15. 14.已知两个等差数列{an}:5,8,11,…,{bn}:3,7,11,…,都有 100 项,试问它们 有多少个共同的项? 解 在数列{an}中,a1=5,公差 d1=8-5=3. ∴an=a1+(n-1)d1=3n+2. 在数列{bn}中,b1=3,公差 d2=7-3=4, ∴bn=b1+(n-1)d2=4n-1. 4m 令 an=bm,则 3n+2=4m-1,∴n= -1. 3 * * ∵m、n∈N ,∴m=3k(k∈N ), ?0<m≤100 ? 又? ,解得 0<m≤75. ?0<n≤100 ? ∴0<3k≤75,∴0<k≤25, ∴k=1,2,3,…,25 ∴两个数列共有 25 个公共项.

1.在等差数列{an}中,当 m≠n 时,d= 差,还可变形为 am=an+(m-n)d.

am-an 为公差公式,利用这个公式很容易求出公 m-n

3

2.等差数列{an}中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍 然是等差数列. * 3.等差数列{an}中,若 m+n=p+q,则 an+am=ap+aq(n,m,p,q∈N ),特别地,若 m+n=2p,则 an+am=2ap.

4



相关文档:


更多相关文章:
高中数学必修5导学案第二章 数列
高中数学必修5导学案第二章 数列_数学_高中教育_教育...课前预习案使用说明与学法指导:1.用 20 分钟左右...2 课后训练案 4 §2.2 等差数列(1) 高一数学...
高中数学 数列全套导学案 新人教A版必修5
高中数学 数列全套导学案 新人教A版必修5_高二数学_数学_高中教育_教育专区。高中数学必修5 第二章 数列全套学案 柳树中学高一数学学案 数列的概念与简单表示法(1...
高中数学__数列全套导学案_新人教A版必修5
高中数学__数列全套导学案_新人教A版必修5 很好的...an ? 2 §2.2 等差数列(1)学习目标10 柳树中学...,na ,?的前 n 项和; 2 3 n 第二章 数列(...
高中数学必修5新教学案:2.2等差数列(第1课时)(优质课一...
高中数学必修5新教学案:2.2等差数列(第1课时)(优质课一等奖)_数学_高中教育_教育专区。优质课比赛第一名哦超好 1 2.2 等差数列(导学案)(第 1 课时) 授课...
必修5第二章数列》全章教案
新课标人教A版必修5第二章... 26页 免费 高中数学...高中数学__数列全套导学案... 37页 1财富值 必修...§2.2 等差数列授课类型: 授课类型:新授课 (第 ...
高中数学必修5自主学习导学案:2.2 等差数列的概念及其...
高中数学必修5自主学习导学案:2.2 等差数列的概念及其性质_数学_高中教育_教育专区。2.2 等差数列(学生版) 1.新课引入 请同学们思考,这四个数列有何共同特点?...
必修5第二章 数列导学案.jsp
淅川县隆兴高级中学 2011 年上学期高二数学必修 5导学案 第二章 数列 班级___ 姓名___ 日期___ 课时 1 数列的概念与简单表示法(1) 学习目标 1. 理解...
必修五第二章导学
必修五第二章导学_数学_高中教育_教育专区。高二数学导学案班级: 组别: 组名:...3 高二数学导学案班级: 2.2.1 【学习目标】 : 1、 理解等差数列的概念; ...
等差数列导学案
等差数列导学案_高一数学_数学_高中教育_教育专区。高一数学 必修 5 §2.2 等差数列—问题导读制题人:李云帆 学习目标 1、理解等差数列的概念和特点,掌握等差...
必修5 第二章:数列复习2导学案
1 (n ? 2) ,求此数列的通项公式. n(n ? 1) 2 高中数学 必修 5 导学案 制作:杜强 使用时间:2017 年 1 月 5 日 3.形如 a n ?1 ? f (n) ...
更多相关标签:
人教版高一数学第二章    二次根式导学案人教版    人教版二次函数导学案    人教版初中物理导学案    人教版四年级导学案    金牌导学案配人教版    人教版初中化学导学案    人教版等差数列说课稿    

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图