9512.net
甜梦文库
当前位置:首页 >> 数学 >>

2015高中数学 2.3变量间相关关系预习 新人教A版必修3


2.3 变量间相关关系(预)
一、预习目标 1. 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关 系; 2. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。 二、预习内容 1.举例说明函数关系为什么是确定关系? 2.一个人的身高与体重是函数关系吗? 3. 相关关系的概念: 4. 什么叫做散点图? 5.回归分析,(1)求回归直线方程的思想方法;(2)回归直线方程的求法

三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容

课内探究学案 一、学习目标 1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关 系. 2.经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的线性回 归方程系数公式建立线性回归方程. 二、学习重难点: 重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程 难点:对最小二乘法的理解。 三、学习过程 思考:考察下列问题中两个变量之间的关系: (1)商品销售收入与广告 支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄. 这些问题中两个变量之间的关系是函数关系吗? (一)、相关关系: 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
1

【说明】 函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。 思考探究: 1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题? 你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗? 2、某地区的环境条件适 合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的 天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能 够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性? (二)、散点图 探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 年龄 脂肪 23 9.5 27 17.8 39 21.2 41 25.9 45 27.5 49 26.3 50 28.2

年龄 脂肪

53 29.6

54 30.2

56 31.4

57 30.8

58 33.5

60 35.2

61 34.6

其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。 思考探究: 1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一 起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变 化? 2、为了确定年龄和人体脂肪含量之间的更明确的关系,我 们需要对数据进行分析,通过作图可以对两 个变量之间的关系有一个直观的印象.以 x 轴表示年龄,y 轴表示脂肪含量,你能在直角坐标系中描出样本 数据对应的图形吗?

3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本 P 85~86 ,这种相关 关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?

(三)、线性相关、回归直线方程和最小二乘法 在各种各样的散点图中, 有些散点图中的点是杂乱分布的, 有些散点图中的点的分布有一定的规律性, 年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点? 如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关 系,这条直线叫做回归直线。 我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的 呢?说一说你的想法。
2

这样,问题就归结为:当 a、b 取什么值时 Q 最小,a、b 的值由下面的公式给出:
n ? ( xi ? x )( y i ? y ) ? i ? 1 ?b ? ? ? n ? 2 ( xi ? x ) ? i ? 1 ? ? ?a ? y ? bx.

?

?x y
i i ?1 n

n

i

? nx y , ? nx
2

?
n

?x
i ?1

2 i

其中 x =

1 n

?
i ?1

xi , y =

1 n

?y
i ?1

n

i

,a 为回归方程的斜率,b 为截距。

求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。 【例题精析】 【例 1】下表是某小卖部 6 天卖出热茶的杯数与当天气温的对比表: 气温/℃ 杯数 26 20 18 24 13 34 10 38 4 50 -1 64

(1)将上表中的数据制成散点图. (2)你能从散点图中发现温度与饮料杯数近似成什么关系吗? (3)如果近似成线性关系的话,请求出回归直线方程来近似地表示这种线性关系. (4)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.

(四)反思总结 1、求样本数据的线性回归方程,可按下列步骤进行: (1)计算平均数 x , y ; (2)求 a,b; (3)写出回归直线方程。 2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归 直线也具有随机性.。 3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关 关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的。因此,对一组样本数据,应先作 散点图,在具有线性相关关系的前提下再求回归方程。 ( 五 ) 当堂检测 1.有关线性回归的说法,不正确的是 A.相关关系的两个变量不是因果关系 B.散点图能直观地反映数据的相关程度
3

C.回归直线最能代表线性相关的两个变量之间的关系 D.任一组数据都有回归方程 2.下面哪些变量是相关关系 A.出租车费与行驶的里程 B.房屋面积与房屋价格 C.身高与体重 D.铁的大小与质量 ? 3.回归方程 y =1.5x-15,则 A. y =1.5 x -15 B.15 是回归系数 a C.1.5 是回归系数 a D.x=10 时,y=0 4.r 是相关系数,则结论正确的个数为 ①r∈[-1,-0.75]时,两变量负相关很强 ②r∈[0.75,1]时,两变量正相关很强 ③r∈(-0.75,-0.3]或[0.3,0.75)时,两变量相关性一般 ④r=0.1 时,两变量相关很弱 A.1 B.2 C.3 D.4 ? =bx+a 过定点________. 5.线性回归方程 y 6.一家工厂为了对职工进行技能检查,对某位职工进行了 10 次实验,收集数据如下: 零件数 x(个) 加 工 时 间 y(分钟) 10 12 20 25 30 33 40 48 50 55 60 61 70 64 80 70

(1)画出散点图; (2)求回归方程.

4

参考答案: 1. 答案:D 解析:只有线性相关的数据才有回归直线. 2. 答案:C 解析:A、B、D 都是函数关系,其中 A 一般是分段函数,只有 C 是相关关系. ? =0,而非 y=0,系数 a、b 的意义要分清. 3. 答案:A 解析:D 中 x=10 时 y 4. 答案:D 解析:相关系数 r 的性质.

? =bx+a, y ? =bx+ y -b x ,( y ? - y )=b(x- x ) 5.答案:( x , y )解析: y

课后练习与提高 1.下列两个变量之间的关系不具有线性关系的是( A.小麦产量与施肥值 B.球的体积与表面积 C.蛋鸭产蛋个数与饲养天数 D.甘蔗的含糖量与生长期的日照天数 2.下列变量之间是函数关系的是( )
2



A.已知二次函数 y ? ax ? bx ? c ,其中 a , c 是已知常数,取 b 为自变量,因变量是这个函数的判别式:

? ? b2 ? 4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩施用肥料量和粮食亩产量 3.下面现象间的关系属于线性相关关系的是( ) A.圆的周长和它的半径之间的关系 B.价格不变条件下,商品销售额与销售量之间的关系 C.家庭收入愈多, 其消费支出也有增长的趋势 D.正方形面积和它的边长之间的关系
5

4.下列关系中是函数关系的是( ) A.球的半径长度和体积的关系 B.农作物收获和施肥量的关系 C.商品销售额和利润的关系 D.产品产量与单位成品成本的关系

? ? 2 ? 1.5 x ,则变量 x 增加一个单位时( 5.设有一个回归方程为 y
A. y 平均增加 1.5 单位 C. y 平均减少 1.5 单位 B. y 平均增加 2 单位 D. y 平均减少 2 单位



? ? 50 ? 80 x ,下列判 6.工人月工资( x 元)与劳动生产率( x 千元)变化的回归直线方程为 y
断不正确的是( ) A.劳动生产率为 1000 元时,工资约为 130 元 B.劳动生产率提高 1000 元时,则工资平均提高 80 元 C.劳动生产率提高 1000 元时,则工资平均提高 130 元 D.当月工资为 210 元时,劳动生产率约为 2000 元 7.某城市近 10 年居民的年收入 x 与支出 y 之间的关系大致符合 ? y ? 0.8x ? 0.1(单位:亿元),预计今 年该城市居民年收入为 15 亿元,则年支出估计是 .

8、在某种产品表面进行腐蚀线试验,得到腐蚀深度 y 与腐蚀时间 x 之间对应的一组数据: 时间 t(s) 深度 y(μ m) (1)画出散点图; (2)试求腐蚀深度 y 对时间 t 的回归直线方程。 5 6 10 10 15 10 20 13 30 16 40 17 50 19 60 23 70 25 90 29 120 46

6

7



更多相关文章:
...统计2.3变量间相关关系预习导航新人教A版必修3讲...
高中数学第二章统计2.3变量间相关关系预习导航新人教A版必修3讲义_高考_高中教育_教育专区。高中数学 第二章 统计 2.3 变量间相关关系预习导航 新人教 A ...
2015高中数学 2.3变量间相关关系练习 新人教A版必修3
2015高中数学 2.3变量间相关关系练习 新人教A版必修3_数学_高中教育_教育专区。2.3 变量间相关关系(练)一、选择题 1.对于给定的两个变量的统计数据,下列说法...
2015高中数学 2.3变量间相关关系总结 新人教A版必修3
2015高中数学 2.3变量间相关关系总结 新人教A版必修3_数学_高中教育_教育专区。2015 高中数学 2.3 变量间相关关系总结 新人教 A 版必修 3 线性相关关系...
【优化设计】2015-2016学年高中数学 2.3变量间相关关...
【优化设计】2015-2016学年高中数学 2.3变量间相关关系课后作业 新人教A版必修3_高一数学_数学_高中教育_教育专区。2.3 变量间相关关系 1.下面的 4 个...
【创新设计】2015-2016学年高中数学 2.3变量间相关关...
【创新设计】2015-2016学年高中数学 2.3变量间相关关系课时作业 新人教A版必修3_数学_高中教育_教育专区。§2.3 变量间相关关系 课时目标 1.理解两个变量...
...《2.3变量间相关关系》导学案 新人教A版必修3
吉林省舒兰市第一中学高中数学2.3变量间相关关系》导学案 新人教A版必修3...【学习重点】变量间的相关性与回归直线方程 课前预习案 【知识链接】 问题 1:...
...两个变量的线性相关练习案 新人教A版必修3
2015-2016学年高中数学 2.3.1变量之间相关关系及两个变量的线性相关练习案 新人教A版必修3_数学_高中教育_教育专区。2.3 2.3.1 变量间相关关系 变量...
高中数学 2.3变量间相关关系教案 新人教A版必修3
高中数学 2.3变量间相关关系教案 新人教A版必修3 李牛牛李牛牛隐藏>> 高一数学必修 3 导学案(教师版) 导学案(教师版) 周次 课题 教学 目标 教学 重点 教...
...章统计2.3变量间相关关系教案新人教A版必修3
高中数学第二章统计2.3变量间相关关系教案新人教A版必修3_数学_高中教育_教育专区。变量间的相关关系、统计案例 变量间的相关关系、统计案例 备注 课题 会求...
...章统计2.3变量间相关关系教案新人教A版必修3
广东省汕头市高中数学第二章统计2.3变量间相关关系教案新人教A版必修3_数学_高中教育_教育专区。《变量间的相关关系》一、教学目标 1、知识与技能: 利用散点...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图