9512.net
甜梦文库
当前位置:首页 >> 高考 >>

高中数学必修一 第三章 函数的应用


第三章 函数的应用目录 §3.1.1 方程的根与函数的零点(新授课) §3.1.2 二分法求方程的近似解(新授课)

§3.2.1 几类不同增长的函数模型(新授课) §3.2.2 函数模型的应用实例(Ⅰ) (新授课) §3.2.2 函数模型的应用实例(Ⅱ) (新授课) §3.2.2 函数模型的应用实例(Ⅲ) (新授课) 必修1 必修1 必修1 必修1 必修1 必修1

第三章 第三章 第三章 第三章 第三章 第三章

函数的应用基础练习(一) 函数的应用基础练习(一)答案 函数的应用基础练习(二) 函数的应用基础练习(二)答案 函数的应用基础练习(三) 函数的应用基础练习(三)答案

第三章
一、课程目标 课程目标

函数的应用

通过本章的学习, 使学生学会用二分法求方程近似解的方法, 从中体会函数与方程之间 的联系,通过一些实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学 科中的广泛应用, 认识到函数是描述客观世界变化规律的基本数学模型, 并能初步运用函数 思想解决一些生活中的简单问题 。 二、学习目标 1.结合二次函数的图象,判断一元二次方程根的存在性与根的个数,从而了解函数的 零点与方程根的联系。 2. 根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法 是求方程近似解的常用方法。 3. 利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会 直线上升、指数爆炸、对数增长等不同函数类型增长的关系。 4. 通过收集一些社会生活中普遍使用的函数模型的实例,了解函数模型的广泛应用。 三、本章知识结构框图 函数的应用

函数与方程

函数模型及其应用

方 程 的根 与 函数的零点

用二分法求方程 的近似解

几种不同增长 的函数模型

函 数 模型 的 应用实例

三、教学内容与课时的安排建议 全章教学时间约需 9 课时,具体分配如下 3.1 函数与方程 3.2 函数模型及其应用 实习作业 小结 3 课时 4 课时 1 课时 1 课时

§3.1.1 方程的根与函数的零点(新授课)
一、 教学目标 1. 知识与技能 理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握 零点存在的判定条件. 2. 过程与方法 通过观察二次函数图象, 并计算函数在区间端点上的函数值之积的特点, 找到连续 函数在某个区间上存在零点的判断方法. 情感、 3. 情感、态度与价值观 在函数与方程的联系中体验数学中的转化思想的意义和价值. 培养学生的观察能力 和抽象概括能力 教学重点与难点 二、教学重点与难点 重点: 重点:零点的概念及存在性的判定. 难点: 难点:零点的确定. 学法: 三、学法:在老师的引导下,学生通过阅读教材,自主学习、思考、交流、讨论和概括, 从而完成本节课的教学目标。 四、教学设想 创设情景, (一)创设情景,揭示课题 1、提出问题:一元二次方程 ax +bx+c=0 (a≠0)的根与二次函数 y=ax +bx+c(a≠0)的 图象有什么关系? 2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象: ①方程 x ? 2 x ? 3 = 0 与函数 y = x 2 ? 2 x ? 3
2
2 2

②方程 x ? 2 x + 1 = 0 与函数 y = x 2 ? 2 x + 1
2

③方程 x ? 2 x + 3 = 0 与函数 y = x 2 ? 2 x + 3
2

引导学生解方程,画函数图象,分析方程的根与图象和 x 轴交点坐标的关系,引出零点 的概念. 上述结论推广到一般的一元二次方程和二次函数又怎样? 探求新知 (二) 探求新知 函数零点的概念: 1、函数零点的概念: 对于函数 y = f ( x)( x ∈ D ) , 把使 f ( x) = 0 成立的实数 x 叫做函数 y = f ( x)( x ∈ D ) 的 零点. 函数零点的意义: 2、函数零点的意义:

函数 y = f (x ) 的零点就是方程 f ( x ) = 0 实数根, 亦即函数 y = f (x ) 的图象与 x 轴交点 的横坐标. 即:方程 f ( x ) = 0 有实数根 ? 函数 y = f (x ) 的图象与 x 轴有交点 ? 函数 y = f (x ) 有零点. 函数零点的求法: 3、函数零点的求法: 求函数 y = f (x ) 的零点: ①(代数法)求方程 f ( x ) = 0 的实数根; ②(几何法)对于不能用求根公式的方程,可以将它与函数 y = f (x ) 的图象联系 起来,并利用函数的性质找出零点. 二次函数的零点: 4、二次函数的零点: 二次函数 y = ax + bx + c( a ≠ 0) .
2

(1)△>0,方程 ax + bx + c = 0 有两不等实根,二次函数的图象与 x 轴有两个交
2

点,二次函数有两个零点. (2)△=0,方程 ax + bx + c = 0 有两相等实根(二重根) ,二次函数的图象与 x 轴
2

有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程 ax + bx + c = 0 无实根,二次函数的图象与 x 轴无交点,二次函
2

数无零点. 零点存在性的探索: 5、零点存在性的探索: (1)观察二次函数 f ( x) = x 2 ? 2 x ? 3 的图象: ① 在区间 [?2,1] 上有零点______; f ( ?2) = _______, f (1) = _______,

f (?2) · f (1) _____0(<或>=) .
② 在区间 [ 2,4] 上有零点______; f ( 2) · f ( 4) ____0(<或>=) . (2)观察下面函数 y = f (x) 的图象

. ① 在区间 [ a, b] 上______(有/无)零点; f (a ) · f (b) _____0(<或>=)

② 在区间 [b, c ] 上______(有/无)零点; f (b) · f (c ) _____0(<或>=) . ③ 在区间 [c, d ] 上______(有/无)零点; f (c ) · f (d ) _____0(<或>=) . 提出问题:①、由以上两步探索,你可以得出什么样的结论? ②、怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点? 6 、 结论 : 如果函数 y = f (x ) 在区间 [a, b ] 上的图像是连续不断的一条曲线,并且有

f (a ) ? f (b) < 0 ,那么,函数 y = f (x) 在区间 (a, b ) 内有零点,既存在 c ∈ (a, b ) ,使得 f (c) = 0 ,这个 c 也就是方程 f ( x) = 0 的根。
、典例剖析 (三) 典例剖析 、 例 1、求函数 f(x)=㏑ x+2x -6 的零点个数。 提出问题: (1)你可以想到什么方法来判断函数零点个数? (2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?
3 2 例 2、求函数 y = x ? 2 x ? x + 2 的零点,并画出它的大致图象.

引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象, 结合图象对函数有一个零点形成直观的认识. 巩固练习: (1)(2) (1)(2) (四)、巩固练习:P88 练习1、 、 ,2、 、 、归纳 (五) 归纳小结 、归纳小结 零点的概念及存在性的判定. 、布置作业 (六) 布置作业 、 P88 练习1、 、 ,2、 、 (3)(4) (3)(4) 五、课后反思

§3.1.2 3.1.2

二分法求方程的近似解(新授课)

一、 教学目标 1. 知识与技能 (1) 解二分法求解方程的近似解的思想方法, 会用二分法求解具体方程的近似解; (2)体会程序化解决问题的思想,为算法的学习作准备。 2. 过程与方法 (1)让学生在求解方程近似解的实例中感知二分法思想; (2)让学生归纳整理本节所学的知识。 情感、 3. 情感、态度与价值观 (1)体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热 爱数学; (2)培养学生认真、耐心、严谨的数学品质。 教学重点与 二、 教学重点与难点 重点:用二分法求解函数 f(x)的零点近似值的步骤。 难点:为何由︱a - b ︳< ε 便可判断零点的近似值为 a(或 b)? 学法: 三、 学法:自主学习、思考、交流、讨论和概括 四、教学设想 、课题 (一) 课题引入 、课题引入 提出问题: (1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑ x+2x-6=0 的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢? (2)通过前面一节课的学习,函数 f(x)=㏑ x+2x-6 在区间内有零点;进一步的问题 是,如何找到这个零点呢? 、研讨新知 (二) 研讨新知 、 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的 要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点 所在的范围。 取区间(2,3)的中点 2.5,用计算器算得 f(2.5)≈-0.084,因为 f(2.5)*f(3)<0,所 以零点在区间(2.5,3)内; 再取区间(2.5,3)的中点 2.75,用计算器算得 f(2.75)≈0.512,因为 f(2.75)*f(2.5) <0,所以零点在(2.5,2.75)内; 由于(2,3)(2.5,3)(2.5,2.75)越来越小,所以零点所在范围确实越来越小了; , , 重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的 精确度下, 将所得到的零点所在区间上任意的一点作为零点的近似值, 特别地可以将区间的 端点作为零点的近似值。例如,当精确度为 0.01 时,由于∣2.5390625-2.53125∣ =0.0078125<0.01,所以我们可以将 x=2.54 作为函数 f(x)=㏑ x+2x-6 零点的近似值,也 就是方程㏑ x+2x-6=0 近似值。 且满足 f (a ) · f (b) < 0 的函数 y = f ( x ) , 1、 、 二分法定义: 对于在区间 [ a ,b] 上连续不断, 二分法定义: 通过不断地把函数 f ( x ) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进 而得到零点近似值的方法叫做二分法 2、二分法步骤: 、二分法步骤:

给定精度 ε ,用二分法求函数 f (x ) 的零点近似值的步骤如下: 1.确定区间 [ a , b] ,验证 f (a ) · f (b) < 0 ,给定精度 ε ; 2.求区间 ( a , b) 的中点 x1 ; 3.计算 f ( x1 ) :
1 ○ 若 f ( x1 ) = 0 ,则 x1 就是函数的零点; 2 ○ 若 f ( a ) · f ( x1 ) < 0 ,则令 b = x1 (此时零点 x0 ∈ ( a, x1 ) ) ; 3 ; ○ 若 f ( x1 ) · f (b) < 0 ,则令 a = x1 (此时零点 x0 ∈ ( x1 , b) )

4.判断是否达到精度 ε ; 即若 | a ? b |< ε ,则得到零点零点值 a (或 b ) ;否则重复步骤 2~4.

㈢、例题剖析
3 . 例 1.求函数 f ( x) = x + x ? 2 x ? 2 的一个正数零点(精确到 0.1 ) .

分析: 分析:首先利用函数性质或借助计算机、计算器画出函数图象,确定函数零点大致所 在的区间,然后利用二分法逐步计算解答. 注意: 1 注意:○ 第一步确定零点所在的大致区间 ( a , b) ,可利用函数性质,也可借助计算机或 计算器, 但尽量取端点为整数的区间, 尽量缩短区间长度, 通常可确定一个长度为 1 的区间; 2 ○ 建议列表样式如下: 零点所在区间 [1,2] [1,1.5] [1.25,1.5] 中点函数值 区间长度 1 0.5 0.25

f (1.5) >0 f (1.25) <0 f (1.375) <0

如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步. . 例 2.借助计算器或计算机用二分法求方程 2 + 3 x = 7 的近似解(精确到 0.1 ) .
x

思考: 思考: 本例除借助计算器或计算机确定方程解所在的大致区间和解的个数外, 你是否还 可以想到有什么方法确定方程的根的个数? 结论: 结论:图象在闭区间 [ a , b] 上连续的单调函数 f (x) ,在 ( a , b) 上至多有一个零点. 、课堂练习: (四) 课堂练习:课本 P91 练习 1、2 、课堂练习 、归纳小结: (五) 归纳小结:本节我们学过哪些知识内容,认为学习“二分法”有什么意义? 、归纳小结 、布置作业 (六) 布置作业:P92 习题 3.1 A 组第 4、5 题。 、布置作业: 五、课后反思

§3.2.1 几类不同增长的函数模型(新授课)
一、教学目标: 教学目标: 知识与技能: 指数爆炸、 对数增长等不同增长的函数模型意义, 知识与技能 结合实例体会直线上升、 理解它们的增长差异性. 过程与方法: 过程与方法:能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函 数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数 模型(指数函数、对数函数、幂函数、分段函数等) ,了解函数模型的广泛应用. 情感、态度与价值观: 情感、态度与价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函 数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用. 教学重点与难点: 二、教学重点与难点: 重点: 重点: 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模 型的增长差异, 结合实例体会直线上升、 指数爆炸、 对数增长等不同函数类型增长的含义. 难点:怎样选择数学模型分析解决实际问题. 难点 学法: 三、学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索. 教学过程: 四、教学过程: 、创设情景 (一) 创设情景 、 材料:澳大利亚兔子数“爆炸” 在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚 伤透了脑筋.1859 年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有 兔子的天敌,兔子数量不断增加,不到 100 年,兔子们占领了整个澳大利亚,数量达到 75 亿只.可爱的兔子变得可恶起来,75 亿只兔子吃掉了相当于 75 亿只羊所吃的牧草,草原的 载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方 法消灭这些兔子, 直至二十世纪五十年代, 科学家采用载液瘤病毒杀死了百分之九十的野兔, 澳大利亚人才算松了一口气. 、组织探究 (二) 组织探究 、 例 1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如 . 下: 方案一:每天回报 40 元; 方案二:第一天回报 10 元,以后每天比前一天多回报 10 元; 方案三:第一天回报 0 .4 元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案? 探究: 探究: 1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系? 2)分析解答(略) 3)根据例 1 表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有 什么认识? 4)你能借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点吗? 5)根据以上分析,你认为就作出如何选择? 例 2.某公司为了实现 1000 万元利润的目标,准备制定一个激励销售部门的奖励方案: . 万元) 随销售利润 x(单 在销售利润达到 10 万元时, 按销售利润进行奖励, 且奖金 y(单位: 位:万元)的增加而增加但奖金不超过 5 万元,同时奖金不超过利润的 25%.现有三个奖 励模型:

y = 0.25 x

y = log 7 x + 1

y = 1.002 x .

问:其中哪个模型能符合公司的要求? 探究: 探究: 1) 本例涉及了哪几类函数模型?本例的实质是什么? 2) 你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗? 3) 通过对三个函数模型增长差异的比较,写出例 2 的解答. 、探究与发现 (三) 探究与发现 、 幂函数、指数函数、对数函数的增长差异分析: 你 能 否 仿 照 前 面 例 题 使 用 的 方 法 , 探 索 研 究 幂 函 数 y = x n ( n > 0) 、 指 数 函 数

y = a x (a > 1) 、对数函数 y = log a x(a > 1) 在区间 (0,+∞) 上的增长差异,并进行交流、讨
论、概括总结,形成较为准确、详尽的结论性报告. 、巩固练习: (四) 巩固练习:课本 P98 练习 1、2; 、巩固练习 、布置作业 (五) 布置作业:课本 P107 习题 3.2 A 组 第 1、2 题; 、布置作业: 归纳小结: (六)归纳小结: 本节课通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同 函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切 联系,从而体会数学的实用价值,享受数学的应用美. 五、课后反思

函数模型的应用实例( (新授课) §3.2.2 函数模型的应用实例(Ⅰ)
教学目标: 一、 教学目标: 1. 知识与技能 能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二 次函数模型解决实际问题. 2.过程与方法 感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数 . 模型在数学和其他学科中的重要性. 3.情感、态度与价值观 体会运用函数思想处理现实生活中和社会中的一些简单问题 .情感、态度与价值观 的实用价值. 教学重点与难点: 二、 教学重点与难点: 1.教学重点:运用一次函数、二次函数模型解决一些实际问题. 2. 教学难点:将实际问题转变为数学模型. 学法: 三、 学法:学生自主阅读教材,采用尝试、讨论方式进行探究. 四、 教学设想 创设情景, (一)创设情景,揭示课题 引例:大约在一千五百年前, 大数学家孙子在 《孙子算经》中记载了这样的一道题: “今 有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干 只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方 法?老师介绍孙子的大胆解法: 他假设砍去每只鸡和兔一半的脚, 则每只鸡和兔就变成了 “独 脚鸡”和“双脚兔”. 这样, “独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是 兔子数,即:47-35=12;鸡数就是:35-12=23. 比例激发学生学习兴趣,增强其求知欲望. 可引导学生运用方程的思想解答“鸡兔同笼”问题. 结合实例, (二)结合实例,探求新知 例 1. 某列火车众北京西站开往石家庄,全程 277km,火车出发 10min 开出 13km 后, 以 120km/h 匀速行驶. 试写出火车行驶的总路程 S 与匀速行驶的时间 t 之间的关系式,并求 火车离开北京 2h 内行驶的路程. 探索: 1)本例所涉及的变量有哪些?它们的取值范围怎样; 2)所涉及的变量的关系如何? 3)写出本例的解答过程. 老师提示:路程 S 和自变量 t 的取值范围(即函数的定义域) ,注意 t 的实际意义. 学生独立思考,完成解答,并相互讨论、交流、评析. 例 2.某商店出售茶壶和茶杯,茶壶每只定价 20 元,茶杯每只定价 5 元,该商店制定 了两种优惠办法: 1)本例所涉及的变量之间的关系可用何种函数模型来描述? 2)本例涉及到几个函数模型? 3)如何理解“更省钱?” ; 4)写出具体的解答过程. 在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型 是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来, 并用数学语言来表达,这一过程称为建模,是解应用题的关键。数学模型可采用各种形式, 如方程(组) ,函数解析式,图形与网络等 . 、课堂练习 (三) 课堂练习 、

1、 某农家旅游公司有客房 300 间, 每间日房租为 20 元, 每天都客满. 公司欲提高档次, 并提高租金,如果每间客房日增加 2 元,客房出租数就会减少 10 间. 若不考虑其他因素, 旅社将房间租金提高到多少时,每天客房的租金总收入最高? 引导学生探索过程如下: 1)本例涉及到哪些数量关系? 2)应如何选取变量,其取值范围又如何? 3)应当选取何种函数模型来描述变量的关系? 4) “总收入最高”的数学含义如何理解? 根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评 析. [略解:] 设客房日租金每间提高 2 x 元, 则每天客房出租数为 300-10 x , x >0, 300-10 x 由 且 >0 得:0< x <30 设客房租金总上收入 y 元,则有: y =(20+2 x )(300-10 x ) =-20( x -10)2 + 8000(0< x <30) 由二次函数性质可知当 x =10 时, ymax =8000. 所以当每间客房日租金提高到 20+10×2=40 元时,客户租金总收入最高,为每天 8000 元. 2、要建一个容积为 8m3,深为 2m 的长方体无盖水池,如果池底和池壁的造价每平方 米分别为 120 元和 80 元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价. (四) 归纳整理,发展思维 、归纳整理,发展思维. 引导学生共同小结,归纳一般的应用题的求解方法步骤: 1) 合理迭取变量,建立实际问题中的变量之间的函数关系,从而将实际问题转化为 函数模型问题: 2)运用所学知识研究函数问题得到函数问题的解答; 3)将函数问题的解翻译或解释成实际问题的解; 4)在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观 性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制. (五) 布置作业 、 课本 P107 习题 3.2 A 组 第 3 、4 题: 五、课后反思

函数模型的应用实例( (新授课) §3.2.2 函数模型的应用实例(Ⅱ)
一、 教学目标 1. 知识与技能 知识与技能:能够利用给定的函数模型或建立确定性函数模型解决实际问题. 2. 过程与方法 过程与方法:进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数 模型进行简单的分析评价. 教学重点与难点 二、 教学重点与难点 重点: 重点:利用给定的函数模型或建立确定性质函数模型解决实际问题. 难点: 难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价. 学法:自主学习和尝试,互动式讨论. 三、 学法 四、 教学设想 创设情景, (一)创设情景,揭示课题 现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及 其蕴含的关系来建立. 对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评 价,验证数学模型的与所提供的数据的吻合程度. 实例尝试, (二)实例尝试,探求新知 例 1. 一辆汽车在某段路程中的行驶速度与时间的关系如图所示. 1)写出速度 v 关于时间 t 的函数解析式; 2)写出汽车行驶路程 y 关于时间 t 的函数关系式,并作图象; 3)求图中阴影部分的面积,并说明所求面积的实际含义; 4) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004km, 试建立汽车行驶这 段路程时汽车里程表读数 s 与时间 t 的函数解析式,并作出相应的图象. 本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模 型,此例分段函数模型刻画实际问题. 教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征. 注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式. 例 2. 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有 效控制人口增长提供依据. 早在 1798, 英国经济家马尔萨斯就提出了自然状态下的人口增长 模型:

y = y0 e rt
其中 t 表示经过的时间, y0 表示 t = 0 时的人口数, r 表示人口的年均增长率. 下表是 1950~1959 年我国的人口数据资料: (单位:万人) 年份 人数 年份 人数 1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到 0.0001) , 用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型, 并检验所得模型与实际 人口数据是否相符; 2)如果按表中的增长趋势,大约在哪一年我国的人口将达到 13 亿? 探索以下问题: 1)本例中所涉及的数量有哪些? 1950 55196 1955 1951 56300 1956 1952 57482 1957 1953 58796 1958 1954 60266 1959

2)描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素? 3)根据表中数据如何确定函数模型? 4) 对于所确定的函数模型怎样进行检验, 根据检验结果对函数模型又应做出如何评价? 如何根据确定的函数模型具体预测我国某个时间的人口数,用的是何种计算方法? 本例的题型是利用给定的指数函数模型 y = y0 e 解决实际问题的一类问题,引导学生
rt

认识到确定具体函数模型的关键是确定两个参数 y0 与 t . 完成数学模型的确定之后,因为计算较繁,可以借助计算器. 在验证问题中的数据与所确定的数学模型是否吻合时, 可引导学生利用计算器或计算机 作出所确定函数的图象, 并由表中数据作出散点图, 通过比较来确定函数模型与人口数据的 吻合程度,并使学生认识到表格也是描述函数关系的一种形式. 引导学生明确利用指数函数模型对人口增长情况的预测, 实质上是通过求一个对数值来 确定 t 的近似值. 、课堂练习 (三) 课堂练习: 、课堂练习: 某工厂今年 1 月、2 月、3 月生产某种产品的数量分别为 1 万件,1.2 万件,1.3 万件, 为了估计以后每个月的产量, 以这三个月的产品数量为依据用一个函数模拟该产品的月产量

t 与月份的 x 关系,模拟函数可以选用二次函数或函数 y = ab x + c(其中a, b, c为常数) .已
知 4 月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好,并说明理由. 探索以下问题: 1)本例给出两种函数模型,如何根据已知数据确定它们? 2)如何对所确定的函数模型进行评价? 本例是不同函数的比较问题,要引导学生利用待定系数法确定具体的函数模型. 引导学生认识到比较函数模型优劣的标准是 4 月份产量的吻合程度, 这也是对函数模评 价的依据. 本例渗透了数学思想方法,要培养学生有意识地运用. 归纳小结, (四). 归纳小结,发展思维 利用给定函数模型或建立确定的函数模型解决实际问题的方法; 1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系; 2)利用待定系数法,确定具体函数模型; 3)对所确定的函数模型进行适当的评价; 4)根据实际问题对模型进行适当的修正. 从以上各例体会到:根据收集到的数据,作出散点图,然后通过观察图象,判断问题适 用的函数模型, 借助计算器或计算机数据处理功能, 利用待定系数法得出具体的函数解析式, 再利用得到的函数模型解决相应的问题,这是函数应用的一个基本过程. 图象、表格和解析式都可能是函数对应关系的表现形式. 在实际应用时,经常需要将函 数对应关系的一种形式向另一种转化. 布置作业: (五)布置作业:课本 P107 习题 3.2 A 组 第 6 题. 五、课后反思

函数模型的应用实例( (新授课) §3.2.2 函数模型的应用实例(Ⅲ)
一、教学目标 1、知识与技能:能够收集图表数据信息,建立拟合函数解决实际问题。 、知识与技能: 2、过程与方法:体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思 、过程与方法: 想方法。 3、情感、态度与价值观:深入体会数学模型在现实生产、生活及各个领域中的广泛应 价值观: 、情感、态度与价值观 用及其重要价值。 教学重点与难点 难点: 二、教学重点与难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 学法: 三、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 四、教学设想 创设情景, (一)创设情景,揭示课题 2003 年 5 月 8 日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略 数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于 5 月 19 日初步完成了第一批 成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数, 并对全国和北京、 山西等地的疫情进行了计算仿 真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典 病人延迟隔离 1 天,就医人数将增加 1000 人左右,推迟两天约增加工能力 100 人左右;若 外界输入 1000 人中包含一个病人和一个潜伏病人,将增加患病人数 100 人左右;若 4 月 21 日以后,政府示采取隔离措施,则高峰期病人人数将达 60 万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据, 建立了非典流行趋势预测动 力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程, 实际上就是对收集来的数据信息进行拟合, 从而找到近似度 比较高的拟合函数。 (二)尝试实践 探求新知 例 1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 身高 体重 身高 体重 60 6.13 120 20.92 70 7.90 130 26.86 80 9.99 140 31.11 90 12.15 150 38.85 100 15.02 160 47.25 110 17.50 170 55.05

1) 根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成 年男性体重与身高 ykg 与身高 xcm 的函数模型的解析式。 2)若体重超过相同身高男性平均值的 1.2 倍为偏胖,低于 0.8 倍为偏瘦,那么这个地区 一名身高为 175cm ,体重为 78kg 的在校男生的体重是事正常? 探索以下问题: 1)借助计算器或计算机,根据统计数据,画出它们相应的散点图; 2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近? 3) 你认为选择何种函数来描述这个地区未成年男性体重 ykg 与身高 xcm 的函数关系比 较合适? 4)确定函数模型,并对所确定模型进行适当的检验和评价.

5)怎样修正所确定的函数模型,使其拟合程度更好? 本例给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的, 要引导学生借助计算器或计算机画图,帮助判断. 根据散点图,利用待定系数法确定几种可能的函数模型,然后进行优劣比较,选定拟合 度较好的函数模型.在此基础上,引导学生对模型进行适当修正,并做出一定的预测. 此外, 注意引导学生体会本例所用的数学思想方法. 例 2. 将沸腾的水倒入一个杯中,然后测得不同时刻温度的数据如下表: 时间(S) 温度(℃) 时间(S) 温度(℃) 60 86.86 360 53.03 120 81.37 420 52.20 180 76.44 480 49.97 240 66.11 540 45.96 300 61.32 600 42.36

1)描点画出水温随时间变化的图象; 2)建立一个能基本反映该变化过程的水温 y (℃)关于时间 x ( s ) 的函数模型,并作出 其图象,观察它与描点画出的图象的吻合程度如何. 3)水杯所在的室内温度为 18℃,根据所得的模型分析,至少经过几分钟水温才会降到 室温?再经过几分钟会降到 10℃?对此结果,你如何评价? 本例意图是引导学生进一步体会,利用拟合函数解决实际问题的思想方法,可依照例 1 的过程,自主完成或合作交流讨论. 、课堂练习 (三) 课堂练习: 、课堂练习: 某地新建一个服装厂, 从今年 7 月份开始投产, 并且前 4 个月的产量分别为 1 万件、 .2 1 万件、1.3 万件、1.37 万件. 由于产品质量好,服装款式新颖,因此前几个月的产品销售情 况良好. 为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你 能解决这一问题吗? 探索过程如下: 1)首先建立直角坐标系,画出散点图; 2)根据散点图设想比较接近的可能的函数模型: 一次函数模型: f ( x ) = kx + b( k ≠ 0); 二次函数模型: g ( x) = ax 2 + bx + c( a ≠ 0); 幂函数模型: h( x) = ax 2 + b( a ≠ 0); 指数函数模型: l ( x) = ab x + c ( a ≠ 0, b >0, b ≠ 1 ) 利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于 尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定. 归纳小结, (四)归纳小结,巩固提高 通过以上三题的练习, 师生共同总结出了利用拟合函数解决实际问题的一般方法, 指出 函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数 思想解决实际问题的基本过程如下:
1

收 集 数 据

画 散 点 图

选 择 函 数 模 型

求 函 数 模 型

检 验

符合 实际

用 函 数 模 型 解 决 实 际 问 题

不符合实际 、布置作业: (五) 布置作业: 课本 P107 习题 3.2 B 组 第 2、3 题: 五、课后反思

必修1 第三章 函数的应用基础练习(一) 函数的应用基础练习( 一、选择题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若 y = x , y = ( ) , y = 4 x , y = x + 1, y = ( x ? 1) , y = x, y = a (a > 1)
2 x 2 5 2 x

1 2

上述函数是幂函数的个数是( A 0 个 B 1个 C 2 个
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

) D
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

3个


2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知 f (x ) 唯一的零点在区间 (1,3) 、 (1, 4) 、 (1,5) 内,那么下面命题错误的(
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

A B C 3

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f (x ) 在 (1, 2) 或 [ 2,3) 内有零点

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f (x ) 在 (3,5) 内无零点 函数 f (x ) 在 (2,5) 内有零点 函数 f (x ) 在 (2, 4) 内不一定有零点 若 a > 0, b > 0, ab > 1 , log 1 a = ln 2 ,则 log a b 与 log 1 a 的关系是(
2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

D
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6



2

A C 4 5
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

log a b < log 1 a
2

B
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

log a b = log 1 a
2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

log a b > log 1 a D
2

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

log a b ≤ log 1 a
2

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

求函数 f ( x ) = 2 x ? 3 x + 1 零点的个数为 (
3
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

) )

A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

2 C 3 D 4 已知函数 y = f (x ) 有反函数,则方程 f ( x ) = 0 (
B
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

1

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

A C 6
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

有且仅有一个根 至少有一个根

B D

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

至多有一个根 以上结论都不对 )

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

如果二次函数 y = x 2 + mx + ( m + 3) 有两个不同的零点,则 m 的取值范围是(
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

(? 2,6)

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

[? 2,6]
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

{? 2,6}
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

( ?∞, ?2 ) ∪ ( 6, +∞ )

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

7 某林场计划第一年造林 10000 亩,以后每年比前一年多造林 20% ,则第四年造林( A 14400 亩 B 172800 亩 C 17280 亩 D 20736 亩
特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

二、填空题
1 2 3
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若函数 f ( x ) 既是幂函数又是反比例函数,则这个函数是 f ( x ) = 幂函数 f ( x ) 的图象过点 3, 4 27) ,则 f ( x ) 的解析式是_____________ (
3
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

新新新 源源源源新源新源 源 新源源 源源源源源源源源 源
h /: w .x y .c /w x t w p k t o j g m /c

特 特特特特特 特王特王特特王 新特新 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

用“二分法”求方程 x ? 2 x ? 5 = 0 在区间 [2,3] 内的实根,取区间中点为 x 0 = 2.5 , 那么下一个有根的区间是
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

4 5

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f ( x ) = ln x ? x + 2 的零点个数为 设函数 y = f ( x ) 的图象在 [ a, b ] 上连续,若满足
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

在 [ a, b ] 上有实根

,方程 f ( x ) = 0

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

三、解答题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

用定义证明:函数 f ( x ) = x +

1 在 x ∈ [1, +∞ ) 上是增函数 x

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

设 x1 与 x2 分 别 是 实 系 数 方 程 ax + bx + c = 0 和 ? ax + bx + c = 0 的 一 个 根 , 且
2 2

x1 ≠ x2 , x1 ≠ 0, x2 ≠ 0 ,求证:方程

a 2 x + bx + c = 0 有仅有一根介于 x1 和 x2 之间 2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f ( x ) = ? x 2 + 2ax + 1 ? a 在区间 [ 0,1] 上有最大值 2 ,求实数 a 的值

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

4 某商品进货单价为 40 元,若销售价为 50 元,可卖出 50 个,如果销售单价每涨 1 元, 销售量就减少 1 个,为了获得最大利润,则此商品的最佳售价应为多少?
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数的应用基础练习( 必修 1 第三章 函数的应用基础练习(一)答案
一、选择题 1 2 3 4
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

C C A

y = x 2 , y = x 是幂函数
唯一的零点必须在区间 (1,3) ,而不在 [3,5 )

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

log 1 a = ln 2 > 0, 得0 < a < 1, b > 1 , log a b < 0, log 1 a > 0
2 2

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

C

f ( x) = 2 x3 ? 3 x + 1 = 2 x 3 ? 2 x ? x + 1 = 2 x( x 2 ? 1) ? ( x ? 1)

= ( x ? 1)(2 x 2 + 2 x ? 1) , 2 x 2 + 2 x ? 1 = 0 显然有两个实数根,共三个;
5
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

B 可以有一个实数根,例如 y = x ? 1 ,也可以没有实数根, 例如 y = 2 x

6 7

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

D C

? = m 2 ? 4(m + 3) > 0, m > 6 或 m < ?2
10000(1 + 0.2)3 = 17280

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

二、填空题 1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

1 x

设 f ( x ) = xα , 则 α = ?1

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

f ( x) = 4 x3
[2, 2.5)
2

f ( x) = xα , 图象过点(3, 4 27) , 3α = 4 27 = 3 4 , α =

3

3 4

3 4 5

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

令 f ( x ) = x 3 ? 2 x ? 5, f (2) = ?1 < 0, f (2.5) = 2.53 ? 10 > 0

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

分别作出 f ( x ) = ln x, g ( x ) = x ? 2 的图象; 见课本的定理内容

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

f (a ) f (b) ≤ 0

三、解答题 1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

证明:设 1 ≤ x1 < x2 , f ( x1 ) ? f ( x2 ) = ( x1 ? x2 )(1 ? 即 f ( x1 ) < f ( x2 ) , ∴函数 f ( x ) = x +

1 )<0 x1 x2

1 在 x ∈ [1, +∞ ) 上是增函数 x

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

a 2 x + bx + c, 由题意可知 ax12 + bx1 + c = 0, ? ax2 2 + bx2 + c = 0 2 a a a bx1 + c = ? ax12 , bx2 + c = ax2 2 , f ( x1 ) = x12 + bx1 + c = x12 ? ax12 = ? x12 , 2 2 2 a a 3a 2 f ( x2 ) = x2 2 + bx2 + c = x2 2 + ax2 2 = x2 , 因为 a ≠ 0, x1 ≠ 0, x2 ≠ 0 2 2 2 a 2 ∴ f ( x1 ) f ( x2 ) < 0 ,即方程 x + bx + c = 0 有仅有一根介于 x1 和 x2 之间 2 解:对称轴 x = a ,
解:令 f ( x ) =
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

当 a < 0, [ 0,1] 是 f ( x ) 的递减区间, f ( x ) max = f (0) = 1 ? a = 2 ? a = ?1 ; 当 a > 1, [ 0,1] 是 f ( x ) 的递增区间, f ( x ) max = f (1) = a = 2 ? a = 2 ; 当 0 ≤ a ≤ 1 时 f ( x ) max = f ( a ) = a ? a + 1 = 2, a =
2

1± 5 , 与 0 ≤ a ≤ 1 矛盾; 2

所以 a = ?1 或 2 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

解:设最佳售价为 (50 + x ) 元,最大利润为 y 元,

y = (50 + x)(50 ? x) ? (50 ? x) × 40

= ? x 2 + 40 x + 500
当 x = 20 时, y 取得最大值,所以应定价为 70 元
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

必修1 第三章 函数的应用基础练习(二) 必修1 函数的应用基础练习( 一、选择题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若函数 y = f (x ) 在区间 [ a, b ] 上的图象为连续不断的一条曲线, )

则下列说法正确的是( A B C
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若 f ( a ) f (b) > 0 ,不存在实数 c ∈ ( a, b) 使得 f (c ) = 0 ; 若 f ( a ) f (b) < 0 ,存在且只存在一个实数 c ∈ ( a, b) 使得 f (c ) = 0 ; 若 f ( a ) f (b) > 0 ,有可能存在实数 c ∈ ( a, b) 使得 f (c ) = 0 ; 若 f ( a ) f (b) < 0 ,有可能不存在实数 c ∈ ( a, b) 使得 f (c ) = 0 ; 方程 lg x ? x = 0 根的个数为( ) D
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

D 2
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

A 3
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

无穷多

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

3

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

1

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

0
x

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若 x1 是方程 lg x + x = 3 的解, x 2 是 10 + x = 3 的解, 则 x1 + x 2 的值为( )
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

A 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

3 2

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

2 3

C

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

3 1 2

D

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

1 3


特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 y = x ?2 在区间 [ ,2] 上的最大值是(
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

A 5
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

1 4

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

?1

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

4

D

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

?4

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

设 f ( x ) = 3 x + 3 x ? 8 ,用二分法求方程 3 x + 3 x ? 8 = 0在x ∈ (1,2 )

内近似解的过程中得 f (1) < 0, f (1.5) > 0, f (1.25) < 0, 则方程的根落在区间( A C 6
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c



新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

(1,1.25) (1.5, 2)

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

(1.25,1.5)
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

D

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

不能确定 )

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

直线 y = 3 与函数 y = x 2 ? 6 x 的图象的交点个数为(
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

A 7
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

3个 C 2个 D 1个 x 若方程 a ? x ? a = 0 有两个实数解,则 a 的取值范围是(
B
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

4个

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o



A C

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

(1, +∞) (0, 2)

B D
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

(0,1) (0, +∞)

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

二、填空题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

1992 年底世界人口达到 54.8 亿,若人口的年平均增长率为 x% , 2005 年底世界人口

为 y 亿,那么 y 与 x 的函数关系式为 2 3 4 5
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

y = xa

2

? 4 a ?9

是偶函数,且在 (0,+∞) 是减函数,则整数 a 的值是
x ? 1 2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 y = (0.5 ? 8)

的定义域是

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知函数 f ( x ) = x 2 ? 1 ,则函数 f ( x ? 1) 的零点是__________
2
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

函 数 f ( x ) = ( m 2 ? m ? 1) x m m = ______
特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

? 2 m ?3

是 幂 函 数 , 且 在 x ∈ (0, +∞ ) 上 是 减 函 数 , 则 实 数

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

三、解答题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

利用函数图象判断下列方程有没有实数根,有几个实数根: ① x + 7 x + 12 = 0 ;② lg( x 2 ? x ? 2) = 0 ;
2

③ x ? 3x ? 1 = 0 ; ④ 3
3

x ?1

? ln x = 0

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

借助计算器,用二分法求出 ln(2 x + 6) + 2 = 3 x 在区间 (1, 2) 内的近似解(精确到 0.1 )

新新新 源源源源新源新源 源 新源源 源源源源源源源源 源
h /: w .x y .c /w x t w p k t o j g m /c

特 特特特特特 特王特王特特王 新特新 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

证明函数 f ( x ) =

x + 2 在 [?2, +∞) 上是增函数

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

4

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

某电器公司生产 A 种型号的家庭电脑, 1996 年平均每台电脑的成本 5000 元,并以纯利润 2% 标定出厂价 1997 年开始,公司更新设备、加强管理,逐步推行股份制,从而使 生产成本逐年降低 2000 年平均每台电脑出厂价仅是 1996 年出厂价的 80% ,但却实 现了纯利润 50% 的高效率 ① 2000 年的每台电脑成本; ②以 1996 年的生产成本为基数,用“二分法”求 1996 年至 2000 年生产成本平均每年降 低的百分率(精确到 0.01 )
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

必修1 第三章 函数的应用基础练习(二)答案 必修1 函数的应用基础练习(
一、选择题 C 1
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

对于 A 选项:可能存在;对于 B 选项:必存在但不一定唯一
x

2

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

C 作出 y1 = lg x, y2 = 3 ? x, y3 = 10 的图象, y2 = 3 ? x, y = x 交点横坐标为

3 3 ,而 x1 + x2 = 2 × = 3 2 2

3

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

D

作出 y1 = lg x, y2 = x 的图象,发现它们没有交点

4

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

C

y=

1 1 , [ ,2] 是函数的递减区间, ymax = y | 1 = 4 x= x2 2 2

5 6 7

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

B

f (1.5 ) ? f (1.25 ) < 0

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

A 作出图象,发现有 4 个交点 A 作出图象,发现当 a > 1 时,函数 y = a 与函数 y = x + a 有 2 个交点
x

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

二、填空题 1 2
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

y = 54.8(1 + x%)13

增长率类型题目

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

1,3,5 或 ?1

a 2 ? 4a ? 9 应为负偶数,

即 a 2 ? 4a ? 9 = ( a ? 2) 2 ? 13 = ?2k , ( k ∈ N * ) , (a ? 2) 2 = 13 ? 2k , 当 k = 2 时, a = 5 或 ?1 ;当 k = 6 时, a = 3 或 1 3 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

(?3, +∞) 0, 2 2

0.5 x ? 8 > 0, 0.5 x > 0.5?3 , x < ?3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

f ( x ? 1) = ( x ? 1) 2 ? 1 = x 2 ? 2 x = 0, x = 0, 或 x = 2

5

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

?m 2 ? m ? 1 = 1 ? ,得 m = 2 ? 2 ? m ? 2m ? 3 < 0 ?
2
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

三、解答题 1 解:作出图象
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

解:略

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

证明:任取 x1 , x2 ∈ [ ?2, +∞ ) ,且 x1 < x2 ,则 f ( x1 ) ? f ( x2 ) =

x1 + 2 ? x2 + 2

=

( x1 + 2 ? x2 + 2)( x1 + 2 + x2 + 2) x1 + 2 + x2 + 2

=

x1 ? x2 x1 + 2 + x2 + 2

因为 x1 ? x2 < 0, x1 + 2 + 所以函数 f ( x ) = 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

x2 + 2 > 0 ,得 f ( x1 ) < f ( x2 )
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

x + 2 在 [?2, +∞) 上是增函数

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

解:略

必修1 第三章 函数的应用基础练习(三) 必修1 函数的应用基础练习( 一、选择题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 y A B C
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

= x3 (



特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

是奇函数,且在 R 上是单调增函数 是奇函数,且在 R 上是单调减函数 是偶函数,且在 R 上是单调增函数 是偶函数,且在 R 上是单调减函数

D 2
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知 a
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

= log 2 0.3, b = 2 0.1 , c = 0.21.3 ,则 a, b, c 的大小关系是(
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /



A C 3
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

a<b<c B a<c<b D

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

c<a<b b<c<a
)

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f ( x) = x5 + x ? 3 的实数解落在的区间是(
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

A 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

[0,1]

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

[1, 2]

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

[2,3]

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

[3, 4]

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

在 y = 2 x , y = log 2 x, y = x 2 , 这三个函数中,当 0 < x1 < x 2 < 1 时, 使 f(

A 5
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

x1 + x 2 f ( x1 ) + f ( x 2 ) 恒成立的函数的个数是( )> 2 2 0 个 B 1个 C 2 个 D 3 个
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /



新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若函数 f ( x ) 唯一的一个零点同时在区间 (0,16) 、 (0,8) 、 (0, 4) 、 (0, 2) 内, 那么下列命题中正确的是( )

A B C

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f ( x ) 在区间 (0,1) 内有零点 函数 f ( x ) 在区间 (0,1) 或 (1, 2) 内有零点 函数 f ( x ) 在区间 [ 2,16 ) 内无零点 函数 f ( x ) 在区间 (1,16) 内无零点 求 f ( x ) = 2 x 3 ? x ? 1 零点的个数为 ( )

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

D 6
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

A 7
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

1

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

2
3

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

3

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

4


特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若方程 x ? x + 1 = 0 在区间 (a, b)( a, b ∈ Z , 且b ? a = 1) 上有一根, a + b 的值为 则 (
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

A

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

?1

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

?2

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

?3

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

?4

二、填空题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 f ( x ) 对一切实数 x 都满足 f ( + x ) = f ( ? x ) ,并且方程 f ( x ) = 0 有三个实根,则
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

1 2

1 2

这三个实根的和为

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若函数 f ( x ) = 4 x ? x ? a 的零点个数为 3 ,则 a = ______
2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

3 一个高中研究性学习小组对本地区 2000 年至 2002 年快餐公司发展情况进行了调查, 制 成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如 图) ,根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭 万盒
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o


90 2.0 45 30 105 1.0

万快/快

2000

2001

2002

快快快快快快快快快



2000

2001

2002



快快快快快快快快快快快快快快快快快

4 5

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

函数 y = x 2 与函数 y = x ln x 在区间 (0, +∞ ) 上增长较快的一个是 若 x ≥ 2 ,则 x 的取值范围是____________
2 x
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

三、解答题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知 2 ≤ 256 且 log 2 x ≥
x

1 x ,求函数 f ( x ) = log 2 ? log 2 2

2

x 的最大值和最小值 2

新新新 源源源源新源新源 源 新源源 源源源源源源源源 源
h /: w .x y .c /w x t w p k t o j g m /c

特 特特特特特 特王特王特特王 新特新 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

建造一个容积为 8 立方米,深为 2 米的无盖长方体蓄水池,池壁的造价为每平方米 100 元,池底的造价为每平方米 300 元,把总造价 y (元)表示为底面一边长 x (米)的函数
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知 a > 0 且 a ≠ 1 ,求使方程 log a ( x ? ak ) = log a 2 ( x ? a ) 有解时的 k 的取值范围
2 2

新新新 源源源源新源新源 源 新源源 源源源源源源源源 源
h /: w .x y .c /w x t w p k t o j g m /c

特 特特特特特 特王特王特特王 新特新 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6

必修1 第三章 函数的应用基础练习(三)答案 必修1 函数的应用基础练习(
一、选择题 1 2 3 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

A C B B

f (? x) = (? x) 3 = ? x 3 = ? f ( x) 为奇函数且为增函数 a = log 2 0.3 < 0, b = 2 0.1 > 1, c = 0.21.3 < 1
f (0) = ?3 < 0, f (1) = ?1 < 0, f (2) = 31 > 0, f (1) ? f (2) < 0
作出图象,图象分三种:直线型,例如一次函数的图象:向上弯曲型,例如 指数函数 f ( x) = 2 x 的图象;向下弯曲型,例如对数函数 f ( x) = lg x 的图象;

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

5 6 7

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

C

唯一的一个零点必然在区间 (0, 2)

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

A 令 2 x 3 ? x ? 1 = ( x ? 1)(2 x 2 + 2 x + 1) = 0 ,得 x = 1 ,就一个实数根 C 容易验证区间 ( a, b) = ( ?2, ?1)

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

二、填空题 1 2 3
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

3 2
4

对称轴为 x =

1 1 1 ,可见 x = 是一个实根,另两个根关于 x = 对称 2 2 2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

作出函数 y = x 2 ? 4 x 与函数 y = 4 的图象,发现它们恰有 3 个交点 2000 年: 30 × 1.0 = 30 (万) ;2001 年: 45 × 2.0 = 90 (万) ;

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

85

2002 年: 90 × 1.5 = 135 (万) x = ; 4 5
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

30 + 90 + 135 = 85 (万) 3

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

y = x2 [2, 4]

幂函数的增长比对数函数快 在同一坐标系中画出函数 y = x 2 与 y = 2 x 的图象,可以观察得出

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

三、解答题

1 ≤ log 2 x ≤ 3 2 3 1 f ( x) = (log 2 x ? 1) ? (log 2 x ? 2) = (log 2 x ? ) 2 ? 2 4 3 1 当 log 2 x = , f ( x ) min = ? ,当 log 2 x = 3, f ( x ) max = 2 2 4 4 2. 解: y = 4 × 300 + 2 x × 2 × 100 + 2 × × 2 × 100 x 1600 y = 400 x + + 1200 x
1. 解:由 2 ≤ 256 得 x ≤ 8 , log 2 x ≤ 3 即
x
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

解: log a2 ( x ? ak ) = log a2 ( x ? a )
2 2 2

? ? ? x > ak ? x > ak ? x > ak ? ? ? 2 ? ? 2 ,即 ? x > a ①,或 ? x < ? a ② ?x > a ? ? ? 2 2 2 2 2 ?( x ? ak ) = x ? a ? x = a (k + 1) ? x = a (k + 1) ? ? 2k 2k ? ?
当 k ≥ 1 时,①得

a (k 2 + 1) > ak , k 2 < 1 ,与 k ≥ 1 矛盾;②不成立 2k

a (k 2 + 1) 当 0 < k < 1 时,①得 > a, k 2 + 1 > 2k ,恒成立,即 0 < k < 1 ;②不成立 2k
显然 k ≠ 0 ,当 k < 0 时,①得

a (k 2 + 1) > a, k 2 + 1 < 2k ,不成立, 2k a (k 2 + 1) < ? a, 得 k < ?1 2k

②得 ak < ∴ 0 < k < 1 或 k < ?1


赞助商链接

更多相关文章:
高一数学必修一第三章函数的应用知识点总结
高一数学必修一第三章函数的应用知识点总结_数学_高中教育_教育专区。第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数 y ? f ( x)(...
高中数学必修一第三章函数的应用知识点总结
第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数 y ? f ( x)(x ? D) ,把使 f ( x) ? 0 成立的实数 x 叫做函 数 y ?...
必修1 第三章函数的应用经典例题讲解
必修1 第三章函数的应用经典例题讲解_数学_高中教育_教育专区。第三章 函数的应用 1:函数的零点【典例精析】例题 1 求下列函数的零点。 2 2 (1)y= x 2...
必修1第三章函数的应用教案教师版有答案
必修1第三章函数的应用教案教师版有答案_高一数学_数学_高中教育_教育专区。根据人教A版教材编写教案,高中数学必修1第三章函数的应用》,教师版,有答案,word版本...
高一数学必修一第三章函数的应用
高一数学必修一第三章函数的应用_数学_高中教育_教育专区。函数的应用常考这些题型 3.1 函数与方程题型一:求函数的零点 例1 判断下列函数是否存在零点,如果存在,...
最新人教版高中数学必修1第三章函数的应用(Ⅰ)》
最新人教版高中数学必修1第三章函数的应用(Ⅰ)》 - 2.3 函数的应用(Ⅰ) 1.直线型的函数模型 我们学过的正比例函数、一次函数等都是直线型的,它们在每个...
数学必修1-第三章函数的应用-教案
数学必修1-第三章函数的应用-教案_数学_高中教育_教育专区。第三章 函数的应用 一、课程要求 本章通过学习用二分法求方程近似解的的方法, 使学生体会函数与方程...
最新人教版高中数学必修1第三章函数的应用——复习》...
最新人教版高中数学必修1第三章函数的应用——复习》教案3 - 示范教案 整体设计 教学分析 函数是描述客观世界变化规律的重要的数学模型, 面对纷繁复杂的变化现象...
高中数学必修一第三章函数的应用单元测试及答案
高中数学必修一第三章函数的应用单元测试及答案_高二数学_数学_高中教育_教育专区。卷子 高中数学必修一第三章函数的应 用单元测试及答案一:单项选择题: (共 10...
最新人教版高中数学必修1第三章函数的应用实习作业》...
最新人教版高中数学必修1第三章函数的应用实习作业》教案_高一数学_数学_高中教育_教育专区。实习作业 从容说课 为了培养和提高学生的数学应用意识, 使学生掌握...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图