9512.net
甜梦文库
当前位置:首页 >> 数学 >>

A remark on the Jordan normal form of matrices


Linear Algebra and its Applications 310 (2000) 5–7 www.elsevier.com/locate/laa

A remark on the Jordan normal form of matrices
Vlastimil Pták ?
Praha, Czech Republic Received 8 October 1998; accepted 9 January 2000 Submitted by H. Schneider

(Translation of part of the paper: Eine Bemerkung zur Jordanschen normal form von Matrizen, Acta Scientiarum Mathematicarum, Szeged 17 (1956) 190–194) It is the purpose of the present note to show that applications of duality theory – which proved to be a powerful tool in the theory of in?nite-dimensional vector spaces – are by no means restricted to that area. Duality methods may also be applied in classical matrix theory; even if no new results are gained, a deeper understanding of the geometric substance and simpli?cation of proofs may be obtained. In fact, it seems to us that geometric considerations represent the only right way to penetrate into the principles of the theory of normal forms. We intend to show that simultaneous consideration of the given space and of its dual makes it possible to give almost trivial proofs of both basic theorems of the theory of normal forms. The standard treatment of these results in textbooks requires considerably more time. Notation. Suppose X and Y are two given ?nite-dimensional linear spaces, dual to each other. Following [1], the product of the vectors x ∈ X and y ∈ Y will be denoted by x, y . Given a linear mapping A of X into itself, the image of the vector x will be denoted by xA. The adjoint mapping A? is de?ned in the usual manner: xA, y = x, yA? . A subspace X0 ? X is said to be invariant with respect to A if x0 A ∈ X0 for every x0 ∈ X0 . The set of all y ∈ Y that satisfy M, y = 0 will be called the annihilator of M. The annihilator of an arbitrary set is always a linear subspace of Y . We shall use the following two well-known facts from duality theory. The proofs are immediate but we include them.
? 8 November 1925 – 9 May 1999.

0024-3795/00/$ - see front matter 2000 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 ( 0 0 ) 0 0 0 5 2 - 5

6

V. Pt? k / Linear Algebra and its Applications 310 (2000) 5–7 a

Fact 1. Let Y0 be a subspace of Y, invariant with respect to A? . Then the annihilator of Y0 is invariant with respect to A. Proof. Suppose x0 belongs to the annihilator of Y0 ; we shall show that so does x0 A. Since Y0 A? ? Y0 by hypothesis, we have x0 A, Y0 = x0 , Y0 A? = 0 which completes the proof. Fact 2. Suppose the subspaces X0 ? X and Y0 ? Y are dual to each other. Then X0 and the annihilator of Y0 constitute a direct sum decomposition of X. Proof. Denote by X1 the annihilator of Y0 . If x0 ∈ X0 ∩ X1 , then x0 , Y0 = 0. The subspaces X0 and Y0 being dual to each other, x0 ∈ X0 implies x0 = 0. We have thus X0 ∩ X1 = {0}. The duality of X0 and Y0 implies dim X0 = dim Y0 whence dim X1 = dim X? dim Y0 = dim X? dim X0 . It follows that X = X0 + X1 and the proof is complete. The above results will be applied as follows. In order to ?nd a direct sum decomposition X = X0 + X1 of the given space X with invariant X0 and X1 , it suf?ces to ?nd two mutually dual subspaces X0 ? X and Y0 ? Y such that X0 is invariant with respect to A and Y0 is invariant with respect to A? . If X1 stands for the annihilator of Y0 , then X1 is invariant according to Fact 1 and constitutes, together with X0 , a direct decomposition of X according to Fact 2. The “geometric” theory of linear operators is based on the following two theorems on representations of the given space as the direct sum of two invariant subspaces. Theorem 1. There exists a direct decomposition X = Xs + Xr , both Xs and Xr being invariant with respect to A, such that A is nilpotent on Xs and regular on Xr . / Theorem 2. Let Aq = 0 and let x0 be a vector with x0 Aq?1 = 0. Let X0 be the smallest invariant subspace containing x0 . Then there exists an invariant subspace X such that X is the direct sum of X0 and X . Proof of Theorem 1. Let Xs (Ys ) be the set of all vectors x ∈ X (y ∈ Y ) that satisfy an equation xAi = 0 (yA?j = 0) for some i(j ). Clearly both these sets are invariant subspaces. We claim that Xs and Ys are dual. In view of symmetry, it suf?ces to ?nd, / for each nonzero x ∈ Xs , a vector y ∈ Ys such that x, y = 0. / Let x ∈ Xs , x = 0 be given. Let q be the smallest exponent for which xAq = 0. / Hence there exists a y0 ∈ Y with xAq?1 , y0 = 0. The sequence y0 , y0 A? , y0 A?2 , . . . cannot be linearly independent. Let p be the smallest exponent for which y0 A?p may be represented as a linear combination of elements y0 A?i for i > p. Hence there exists a vector z with y0 A?p = zA?p+1 . We claim that p q. Otherwise it would be possible to write y0 A?q?1 in the form vA?q ; this is impossible since

V. Pt? k / Linear Algebra and its Applications 310 (2000) 5–7 a

7

0 = xAq?1 , y0 = x, y0 A?q?1 = x, vA?q = xAq , v = 0. / If y = y0 A?q?1 ? zA?q , then yA?p?q+1 = y0 A?p ? zA?p+1 = 0 so that y ∈ Ys . Furthermore / x, y = x, y0 A?q?1 = xAq?1 , y0 = 0 and the proof is complete. / / Proof of Theorem 2. Choose y0 ∈ Y such that x0 Aq?1 , y0 = 0. Thus y0 A?q?1 = 0 so that the dimension of the smallest invariant subspace Y0 of Y containing y0 equals q. We claim that X0 and Y0 are dual. Given x ∈ X0 , x = 0, then x = a0 x0 + / a1 x0 A + · · · + aq?1 x0 Aq?1 . Let ak be the ?rst nonzero coef?cient. Then / x, y0 A?q?1?k = xAq?1?k , y0 = ak x0 Aq?1 , y0 = 0 and the proof is complete.

Reference
[1] N. Bourbaki, Algèbre linéaire, Actualités Scientifiques et Industrielles, 1032, Paris, 1947.



更多相关文章:
The Jordan normal form of higher order Osserman alg....pdf
The Jordan normal form of higher order Osserman algebraic curvature tensors_...A remark on the Jordan... 暂无评价 3页 免费 Algebraic Semantics Fo......
A remark on the rank of positive semidefinite matri....pdf
A remark on the rank of positive semidefinite matrices subject to affine constraints_专业资料。Abstract. Let Kn be the cone of positive semidefinite n \...
A Remark on the structure of symmetric quantum dyna....pdf
A Remark on the structure of symmetric quantum dynamical semigroups on von ...quantum dynamical semigroups on the algebra Mn of n × n matrices are ...
A remark on a theorem of M. Haiman.pdf
A remark on a theorem of M. Haiman_专业资料。We deduce a special case ...g := End(V ) = gln (C) be the Lie algebra of n × n-matrices. ...
关于Jensen不等式的应用。1.pdf
分析(第三版) 而且Jensen不等式(1ⅥAx:+(1一A)...Thematricesonover decompositiontheoremsof vector ...anotherproofofthetheorem the Jordannormalform ...
On low rank perturation of matrices.pdf
On low rank perturation of matrices_专业资料。The article is devoted to ...Theorem 3 is about the Jordan normal form of a perturbed matrix. It ...
A remark on sl_2 approximation of the Kontsevich in....pdf
A remark on sl_2 approximation of the Kontsevich integral of the unknot_...the trace of matrices in the standard two dimensional representation of sl2 ...
a remark on the renormal....pdf
A Remark on the Renormalization Group Equation for the Penner Model_专业资料...the free energy as the size N of the matrices in the theory is varied....
...Matrices for efficient Hermite Normal Form compu....pdf
for efficient Hermite Normal Form comput_专业资料 ...Preconditioning of Rectangular Polynomial Matrices for...A remark on the Jordan... 暂无评价 3页 免费...
A remark on matrix rigidity.pdf
A remark on matrix rigidity_专业资料。The rigidity of a matrix is defined...If " and are constants and (Mn ) is a sequence of n n-matrices, ...
Shifted Normal Forms of Polynomial Matrices.pdf
the problem of computing a normal form into one...coe cient matrices on both row and column sides...a 2 Remark 2.2 Up to a (unique) permutation...
南航矩阵论双语Matrix Theory ch5 3-5_图文.ppt
CH5 INVARIANTS AND CANONICAL FORMS OF MATRICES ...43 Sec 4 Conditions for similarity Remark ? 44 ...The process for finding a Jordan canonical form ...
On the spectra of nonsymmetric Laplacian matrices.pdf
On the spectra of nonsymmetric Laplacian matrices_...A standardized Laplacian matrix is a Laplacian ...Remark 1. Since (13) and (14) are true for...
A remark on the regularity of prehomogeneous vector....pdf
A remark on the regularity of prehomogeneous vector spaces_专业资料。In this note, we prove that if $(G,V)$ is a prehomogeneous vector space over ...
A remark on the Chebotarev theorem about roots of u....pdf
A remark on the Chebotarev theorem about roots of unity_专业资料。Let $...1, form a basis of Cn . The matrix C is diagonal with respect to ...
A remark on the spectrum of the analytic generator.pdf
A remark on the spectrum of the analytic ...(4) takes the following form: (Q? U2i + 2...ON THE NORMAL SPECT... 4页 免费 A remark ...
A NOTE ON THE FIELD OF VALUES OF NON-NORMAL MATRICES.pdf
A NOTE ON THE FIELD OF VALUES OF NON-NORMAL MATRICES_专业资料。Abstract....A remark on the Jordan... 暂无评价 3页 免费 A note on the uniquene...
...one perturbations of H-positive real matrices_免....pdf
A remark on the rank of ... 暂无评价 9页 免费 2 SPECTRAL ANALYSIS OF...Generic Jordan structures of perturbed matrices are identi?ed. ? 2013 ...
On the Mean of the Second Largest Eigenvalue on the....pdf
On the Mean of the Second Largest Eigenvalue on the Convergence Rate of ...transition matrices and then transferred to matrices in Jordan normal form. ...
A remark on irregularity of the dbar-Neumann proble....pdf
A REMARK ON IRREGULARITY OF THE ?-NEUMANN PROBLEM ON NON-SMOOTH DOMAINS arXiv:math/0608501v4 [math.CV] 13 May 2007 ¨ ? SONMEZ SAHUTOGLU ? ...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图