9512.net
甜梦文库
当前位置:首页 >> >>

2018-2019年浙江版高考数学一轮复习(讲+练+测) 专题7.6 数学归纳法(练)及答案

第 06 节 数学归纳法 A 基础巩固训练 1.用数学归纳法证明“ 1 ? a ? a 2 ? ? ? a n ?1 ? 时,等式左边是 ( A. 1 B. 1 ? a ) C. 1 ? a ? a 2 1 ? a n?2 a ? 1, n ? N * ,在验证 n ? 1 1? a ? ? D. 1 ? a ? a 2 ? a3 【答案】C 【解析】 n ? 1 时,等式的左边等于 1 ? a ? a 2 ,选 C. 2.用数学归纳法证明等式 1 ? 2 ? ? ? n ?1? ? n ? ? n ? 1? ? ? ? 2 ? 1 ? 2 2 2 2 2 2 2 n 2n2 ? 1 3 ? ? ,当 n ? k ? 1 时,等式左 端应在 n ? k ? 1 的基础上加上( A. ) ? k2 ? k ? 1? 2 ? 2k 2 B. ? k ? 1? 2 C. ? k ? 1? 2 D. 1 2 2 ? k ? 1? ? 1? ? k ? 1? ? ? ? 3 【答案】B 3.用数学归纳法证明 1 ? 2 ? 3 ? ? ? n 2 ? 的基础上加上( A. k ? 1 2 n4 ? n2 ,则当 n ? k ? 1 时,左端应在 n ? k 2 ) 2 B. ? k ? 1? C. 2 ? k ? 1? ? ? k ? 1? 4 2 2 D. ?k 2 ? 1 ? k 2 ? 2 ? ? ? ? k ? 1? ? ? ? 【答案】D 【解析】由于当 n ? k 时,等式左端 ? 1 ? 2 ? ? ? k 2 ,因此当 n ? k ? 1 时,等式左 端 ? 1 ? 2 ? ? ? k 2 ? ? k 2 ? 1? ? (k 2 ? 2) ? ? ? ? k ? 1? ,增加了项 2 ?k 2 ? 1 ? k 2 ? 2 ? ? ? ? k ? 1? .应选答案 D. 2 ? ? ? 4.用数学归纳法证明 1 ? 1 1 1 ? ?? n ? n n ? N * , n ? 1 时,由 n ? k ? k ? 1? 时不 2 3 2 ?1 ? ? 等式成立,推证 n ? k ? 1 时,左边应增加的项数是( A. 2 k ?1 【答案】C 1 1 1 ? ?? k ; 2 3 2 ?1 1 1 1 1 1 当 n =k+1 时,左边= 1 ? ? ? ? k + k +?+ k ?1 . 2 3 2 ?1 2 2 ?1 ) B. 2 k ? 1 C. 2k D. 2k ? 1 【解析】当 n=k 时,左边= 1 ? 因为 2k,2k+1,2k+2,?,2k+1-1 是一个首项为 2k,公差为 1 的等差数列,共有 2k 项, 所以左边增加了 2k 项. 故选 C. 5.用数学归纳法证明“ 时,左边应增加的项数是( A. 【答案】C B. C. D. ) ”时,由 不等式成立, 证明 B 能力提升训练 1.用数学归纳法证明不等式“ 1 1 1 13 ? ?? ? ? (n ? 2) ”时的过程中, 由 n ?1 n ? 2 2n 24 n ? k 到 n ? k ? 1 时,不等式的左边( ) A. 增加了一项 1 2 ? k ? 1? B. 增加了两项 1 1 ? 2k ? 1 2 ? k ? 1? D. 增加了一项 C. 增加了两项 1 1 1 ? ,又减少了一项 k ?1 2k ? 1 2 ? k ? 1? 1 1 ,又减少了一项 k ?1 2 ? k ? 1? 【答案】C 【解析】 n ? k 时,左边 ? 1 1 1 ? ?? ? , n ? k ? 1 时,左边 k ?1 k ? 2 k ?k ? 1 1 1 ? ??? , ? k ? 1? ? 1 ? k ? 1? ? 2 ? k ? 1? ? ? k ? 1? 1 1 ? 1 1 1 ? 1 ?? ? ??? ? ? ?? k ? k ? k ? 1 2k ? 1 2k ? 2 ? k ?1 k ? 2 所以 C 选项是正确的. 2.用数学归纳证明“凸 n 边形对角线的条数 f ? n ? ? ( ) B. n ? 2 成立 D. n ? 4 成立 n ? n ? 3? 2 ”时,第一步应验证 A. n ? 1 成立 C. n ? 3 成立 【答案】C 3.用数学归纳法证明 变化是( A. 增加 B. 增加 ) 1 1 1 11 ? ?? ? ? 时,由 k 到 k+1, 不等式左边的 n ?1 n ? 2 2n 34 1 项 2 ? k ? 1? 1 1 和 两项 2k ? 1 2k ? 2 C. 增加 1 1 1 和 两项同时减少 项 2k ? 1 2k ? 2 k ?1 D. 以上结论都不对 【答案】C 【解析】 n ? k 时,左边 ? 1 1 1 ? ??? , n ? k ? 1 时,左边 k ?1 k ? 2 k ?k ? 1 1 1 ? ??? ,由“ n ? k ”变成“ n ? k ? 1 ”时, ? k ? 1? ? 1 ? k ? 1? ? 2 ? k ? 1? ? ? k ? 1? 1 1 1 ? ? 故选 C. 2k ? 1 2k ? 2 k ? 1 点睛:本题主要考查了数学归纳法的应用,属于基础题;用数学归纳法证明恒等 式的步骤及注意事项:①明确初始值 n0 并验证真假. (必不可少)②“假设 n=k 时命题正确”并写出命题形式.③分析“n=k+1 时”命题是什么,并找出与 “n=k”时命题形式的差别.弄清左端应增加的项.④明确等式左端变形目标, 掌握恒等式变形 常用的方法:乘法公式、因式分解、添拆项、配方等,并用上 假设. 4.用数学归纳法证明 1 ? 1 1 1 1 n ? ? ?? ? n ? n ? N * , 假设 n ? k


学霸百科 | 新词新语

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图