9512.net
甜梦文库
当前位置:首页 >> 数学 >>

高中数学必修二立体几何知识点梳理


立体几何初步
1、 柱、锥、台、球的结构特征

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱 ABCDE ? A B C D E 或用对角线的端点字母,如五棱柱 AD
' ' ' ' '
'

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 P ? A B C D E
' ' ' ' '

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 P ? A B C D E
' ' ' ' '

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形

③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
1

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与 x 轴平行的线段仍然与 x 平行且长度不变; ②原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。

2

4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高, h 为斜高,l 为母线)
'

S直棱柱侧面积 ? ch
S正棱锥侧面积 ?
S正棱台侧面积 ?

S圆柱侧 ? 2?rh

1 ch ' 2

S圆锥侧面积 ? ?rl

1 (c1 ? c2 )h' 2

S圆台侧面积 ? (r ? R)?l
S圆锥表 ? ?r ?r ? l ?

S圆柱表 ? 2?r ?r ? l ?
S圆台表 ? ? r 2 ? rl ? Rl ? R2
(3)柱体、锥体、台体的体积公式

?

?
2

V柱 ? Sh



V圆柱 ? Sh ? ? r h ,

1 V锥 ? Sh 3



1 V圆锥 ? ?r 2 h 3

1 V台 ? (S ' ? S ' S ? S )h 3

1 1 V圆台 ? (S ' ? S ' S ? S )h ? ? (r 2 ? rR ? R2 )h 3 3

3

4 3 V = ?R (4)球体的表面积和体积公式: 球 3
5、空间点、直线、平面的位置关系 (1)平面



S球面 =4? R2

① 平面的概念: A.描述性说明; B.平面是无限伸展的; ② 平面的表示:通常用希腊字母α 、β 、γ 表示,如平面α (通常写在一个锐角内); 也可以用两个相对顶点的字母来表示,如平面 BC。 ③ 点与平面的关系:点 A 在平面 ? 内,记作 A ? ? ;点 A 不在平面 ? 内,记作 A ? ? 点与直线的关系:点 A 的直线 l 上,记作:A∈l; 点 A 在直线 l 外,记作 A ?l;

直线与平面的关系:直线 l 在平面α 内,记作 l ? α ;直线 l 不在平面α 内,记作 l ? α 。 (2)公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 (即直线在平面内,或者平面经过直线) 应用:检验桌面是否平; 判断直线是否在平面内 用符号语言表示公理 1: A∈L A B∈L => L α α · L A∈α B∈α (3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理 2 及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据

符号表示为: A、B、C 三点不共线 => 有且只有一个平面α ,使 A∈α 、B∈α 、C∈α 。

A

α ·

·

C

·

B

4

(4)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α 和β 相交,交线是 a,记作α ∩β =a。 符号语言: P ? A 公理 3 的作用: ①它是判定两个平面相交的方法。 ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 (5)公理 4:平行于同一条直线的两条直线互相平行 符号表示为:设 a、b、c 是三条直线 a∥b c∥b =>a∥c β α
P

B? A

B ? l, P ? l

·

L

强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理 4 作用:判断空间两条直线平行的依据。 (6)空间直线与直线之间的位置关系 ① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。 ③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线 ④ 异面直线所成角:直线 a、b 是异面直线,经过空间任意一点 O,分别引直线 a’∥a,b’∥b,则把直 线 a’和 b’所成的锐角(或直角)叫做异面直线 a 和 b 所成的角。两条异面直线所成角的范围是(0°, 90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。 说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理 (2)在异面直线所成角定义中,空间一点 O 是任取的,而和点 O 的位置无关。 ②求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位 置上。 B、证明作出的角即为所求角 C、利用三角形来求角

5

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系 直线在平面内——有无数个公共点.

三种位置关系的符号表示: a ? α

a∩α =A

a∥α

(9)平面与平面之间的位置关系:平行——没有公共点;α ∥β 相交——有一条公共直线。α ∩β =b 6、空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 简记为: 线线平行 ? 线面平行 符号表示: a α b β => a∥α a∥b 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行。线面平行 ? 线线平行 符号表示: a∥α a β α ∩β = b

=>a∥b

作用:利用该定理可解决直线间的平行问题。

6

(2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行→面面平行),

符号表示: a β b β a∩b = P a∥α b∥α

=>β ∥α

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行→面面平行), (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

符号表示: α ∥β α ∩γ = a β ∩γ = b

=>a∥b

作用:可以由平面与平面平行得出直线与直线平行

7

7、空间中的垂直问题 (1)线线、面面、线面垂直的定义 ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。 L p α

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是 直二面角(平面角是直角),就说这两个平面垂直。 (2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

8



更多相关文章:
高中数学必修二立体几何知识点总结.doc
高中数学必修二立体几何知识点总结 - 第一章 ' 立体几何初步 特殊几何
高中数学必修二立体几何知识点梳理.doc
高中数学必修二立体几何知识点梳理 - 立体几何初步 1、 柱、锥、台、球的结构特
新人教版高中数学必修二立体几何知识点.doc
新人教版高中数学必修二立体几何知识点 - 裔栈陵盎 植古角 摸亭芝 浇歇疹 筒拆
人教A版高中数学必修2空间立体几何知识点归纳.doc
人教A版高中数学必修2空间立体几何知识点归纳 - 第一章 空间几何体知识点归纳
高中数学必修2立体几何知识点及解题思路.doc
高中数学必修2立体几何知识点及解题思路_高一数学_数学_高中教育_教育专区。高中数学必修2立体几何知识点及解题思路,纯粹为个人总结。 ...
高中数学必修2立体几何知识点及解题思路.doc
高中数学必修2立体几何知识点及解题思路 - 高中数学必修 2》知识点 版权
高中数学必修二立体几何知识点总结及例题.doc
高中数学必修二立体几何知识点总结及例题 - 立体几何初步 一、柱、锥、台、球的
高中数学必修二立体几何知识点总结..doc
高中数学必修二立体几何知识点总结. - 立体几何初步 特殊几何体表面积公式(c
高中数学必修2立体几何知识点.doc
高中数学必修2立体几何知识点 - 高中数学 必修 2 知识点 第一章 空间几何体
高中数学必修二立体几何知识点梳理.pdf
高中数学必修二立体几何知识点梳理 - 立体几何初步 1、 柱、锥、台、球的结构特
高中数学必修2立体几何知识点.doc
高中数学必修2立体几何知识点_高二数学_数学_高中教育_教育专区。总结了高中必修
高中数学必修2立体几何知识点..doc
高中数学必修2立体几何知识点. - 高中数学 必修 2 知识点 第一章 空间几何
高中数学必修二立体几何立体几何总知识点.doc
高中数学必修二立体几何立体几何总知识点 - 立体几何初步 1、 柱、锥、台、球的
必修二立体几何知识点总结第一章.doc
2015-2016 学年度高一上学期 数学知识点 高中数学必修 2 立体几何知识点复习第一章一、柱、锥、台、球的结构特征 姓名 2015.12.01 空间几何体 (1)棱柱:定义...
必修2立体几何复习(知识点+经典习题).doc
必修2立体几何复习(知识点+经典习题) - 必修二立体几何知识点与复习题 一、判
高中数学立体几何知识点知识清单.doc
高中数学立体几何知识点知识清单 - 高中课程复习专题 高中课程复习专题数学立
人教版高中数学必修2立体几何知识点.pdf
人教版高中数学必修2立体几何知识点 - 更多资料请加三好网小好师弟微信: san
高中数学必修二立体几何立体几何总知识点.doc
高中数学必修二立体几何立体几何总知识点 - 戴氏教育簇桥校区 立体几何初步 授课
新课标人教A版数学必修二立体几何 知识点总结.doc
新课标人教A版数学必修二立体几何 知识点总结 - 立体几何 知识点总结 一、平面
1高中数学必修2知识点总结.doc
1高中数学必修2知识点总结 - 高中数学必修 2 第一章 立体几何初步 1、柱、
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图