9512.net
甜梦文库
当前位置:首页 >> 数学 >>

数列知识点题型方法总结22


数列知识点题型方法总复习
一.数列的概念:数列是一个定义域为正整数集 N*(或它的有限子集{1,2,3,?,n} )的特殊函 数,数列的通项公式也就是相应函数的解析式。如 (1)已知 a n ?
n n ? 156
2

( n ? N ) ,则在数列 { a n } 的最大项为__(
*

1 25

) ;

(2) 数列 { a n } 的通项为 a n ?

an bn ? 1

, 其中 a , b 均为正数, a n 与 a n ? 1 的大小关系为___ a n ? a n ? 1 ) 则 ( ;

(3)已知数列 { a n } 中, a n ? n 2 ? ? n ,且 { a n } 是递增数列,求实数 ? 的取值范围( ? ? ? 3 ) ;(4) 一给定函数 y ? f ( x ) 的图象在下列图中,并且对任意 a 1 ? ( 0 ,1) ,由关系式 a n ? 1 ? f ( a n ) 得到的数 列 { a n } 满足 a n ? 1 ? a n ( n ? N * ) ,则该函数的图象是(A)

A B C D 二.等差数列的有关概念: 1.等差数列的判断方法:定义法 a n ? 1 ? a n ? d ( d 为 常 数 )或 a n ? 1 ? a n ? a n ? a n ?1 ( n ? 2 ) 。如设 { a n } 是等 差数列,求证:以 bn=
a1 ? a 2 ? ? ? a n n
n ? N * 为通项公式的数列 { b n } 为等差数列。

a a 2. 等差数列的通项: n ? a1 ? ( n ? 1) d 或 a n ? a m ? ( n ? m ) d 。 如(1)等差数列 { a n } 中, 1 0 ? 3 0 , 2 0 ? 5 0 , a

则通项 a n ? 值范围是______
8 3

2 n ? 1 0 ;(2)首项为-24 的等差数列,从第 10 项起开始为正数,则公差的取

? d ? 3 n ( a1 ? a n ) 2 3 2

3.等差数列的前 n 和: S n ?
a n ? a n ?1 ? 1 2
*

, S n ? n a1 ?

n ( n ? 1) 2 15 2

d 。如(1)数列 { a n } 中,

(n ? 2, n ? N ) , an ?

,前 n 项和 S n ? ?

,则 a1 ? ? 3 , n ? 1 0 ;

2 (2)已知数列 { a n } 的前 n 项和 S n ? 1 2 n ? n ,求数列 { | a n |} 的前 n 项和 T n

(答: T n ? ?

?1 2 n ? n 2 ( n ? 6 , n ? N * ) ? ? n ? 12 n ? 72(n ? 6, n ? N ) ?
2 *

).

4.等差中项:若 a , A , b 成等差数列,则 A 叫做 a 与 b 的等差中项,且 A ?

a?b 2



提醒: (1)等差数列的通项公式及前 n 和公式中,涉及到 5 个元素: a 1 、 d 、 n 、 a n 及 S n ,其中 a 1 、
d 称作为基本元素。只要已知这 5 个元素中的任意 3 个,便可求出其余 2 个,即知 3 求 2。 (2)为减 少运算量,要注意设元的技巧,如奇数个数成等差,可设为?, a ? 2 d , a ? d , a , a ? d , a ? 2 d ?(公

差为 d ) ;偶数个数成等差,可设为?, a ? 3 d , a ? d , a ? d , a ? 3 d ,?(公差为 2 d ) 三.等差数列的性质: 1.当公差 d ? 0 时,等差数列的通项公式 a n ? a1 ? ( n ? 1) d ? d n ? a 1 ? d 是关于 n 的一次函数,且斜率
) n 是关于 n 的二次函数且常数项为 0. 2 2 2.若公差 d ? 0 ,则为递增等差数列,若公差 d ? 0 ,则为递减等差数列,若公差 d ? 0 ,则为常数 2

为公差 d ;前 n 和 S n ? n a 1 ? 列。

n ( n ? 1)

d ?

d

n ? ( a1 ?
2

d

1

3.当 m ? n ? p ? q 时,则有 a m ? a n ? a p ? a q ,特别地,当 m ? n ? 2 p 时,则有 a m ? a n ? 2 a p 如 (1)等差数列 { a n } 中, S n ? 1 8, a n ? a n ? 1 ? a n ? 2 ? 3, S 3 ? 1 ,则 n =__27__ (2)在等差数列 ? a n ? 中, a 1 0 ? 0 , a 1 1 ? 0 ,且 a 1 1 ? | a1 0 | , S n 是其前 n 项和,则 B A、 S 1 , S 2 ? S 1 0 都小于 0, S 1 1 , S 1 2 ? 都大于 0 B、 S 1 , S 2 ? S 1 9 都小于 0, S 2 0 , S 2 1 ? 都大于 0 C、 S 1 , S 2 ? S 5 都小于 0, S 6 , S 7 ? 都大于 0 D、 S 1 , S 2 ? S 2 0 都小于 0, S 2 1 , S 2 2 ? 都大于 0 4.若 { a n } 、 { b n } 是等差数列,则 { k a n } 、 { k a n ? p b n } ( k 、 p 是非零常数)、 { a p ? n q } ( p , q ? N ) 、
*

S n , S 2 n ? S n , S 3 n ? S 2 n ,?也成等差数列,而 { a

an

} 成等比数列;若 { a n } 是等比数列,且 a n ? 0 ,

则 { lg a n } 是等差数列. 如等差数列的前 n 项和为 25,前 2n 项和为 100,则它的前 3n 和为 225 。 5.在等差数列 { a n } 中,当项数为偶数 2 n 时, S 偶 - S 奇 ? n d ;项数为奇数 2 n ? 1 时, S 奇 ? S 偶 ? a 中 ,
S 2 n ? 1 ? ( 2 n ? 1) ? a 中 (这里 a 中 即 a n ) S 奇 : S ;


?( k

)? k 1 :

。如(1)在等差数列中,S11=22,

则 a 6 =__2____(2)项数为奇数的等差数列 { a n } 中,奇数项和为 80,偶数项和为 75,求此数列 的中间项与项数(答:5;31). 6.若等差数列 { a n } 、 { b n } 的前 n 和分别为 A n 、 B n ,且
an bn ? ( 2 n ? 1) a n ( 2 n ? 1) b n
Sn Tn ?

An Bn

? f ( n ) ,则

?

A2 n ?1 B 2 n ?1

? f ( 2 n ? 1) .如设{ a n }与{ b n }是两个等差数列, 它们的前 n 项和分别为
an bn ? ___________(答:
6n ? 2 8n ? 7

S n 和 T n ,若

3n ? 1 4n ? 3

,那么



7. “首正”的递减等差数列中,前 n 项和的最大值是所有非负项之和; “首负”的递增等差数列中, 前 n 项和的最小值是所有非正项之和。法一: 由不等式组 ? a n ?
? 0 ? ?a ? 0 ? ?或 ? n ? ? a n ?1 ? 0? ? ? a n ?1 ? 0 ? ?

确定出前多少项

为非负(或非正) ;法二:因等差数列前 n 项是关于 n 的二次函数,故可转化为求二次函数的最 值,但要注意数列的特殊性 n ? N 。上述两种方法是运用了哪种数学思想?(函数思想) ,由此 你能求一般数列中的最大或最小项吗?如(1)等差数列 { a n } 中, a 1 ? 2 5 , S 9 ? S 1 7 ,问此数列 前多少项和最大?并求此最大值。 (答:前 13 项和最大,最大值为 169) ; (2)若 { a n } 是等差数列,首项 a 1 ? 0 , a 2 0 0 3 ? a 2 0 0 4 ? 0 , a 2 0 0 3 ? a 2 0 0 4 ? 0 ,则使前 n 项和 S n ? 0 成立 的最大正整数 n 是 (答:4006) 8.如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列 的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即 研究 a n ? b m .
*

四.等比数列的有关概念: 1.等比数列的判断方法:定义法
(n ? 2)

a n ?1 an

? q ( q 为 常 数 ),其中 q ? 0 , a n ? 0



a n ?1 an

?

an a n ?1

。如(1)一个等比数列{ a n }共有 2 n ? 1 项,奇数项之积为 100,偶数项之积为 120,则 a n ? 1 为
5 6

____(答:

)(2)数列 { a n } 中, S n =4 a n ? 1 +1 ( n ? 2 )且 a 1 =1,若 b n ? a n ? 1 ? 2 a n ,求证:数列 ;

{ b n }是等比数列。 2.等比数列的通项: a n ? a 1 q n ? 1 或 a n ? a m q n ? m 。如设等比数列 { a n } 中, a 1 ? a n ? 6 6 , a 2 a n ? 1 ? 1 2 8 , 前 n 项和 S n =126,求 n 和公比 q . (答: n ? 6 , q ?
1 2

或 2)

2

3.等比数列的前 n 和:当 q ? 1 时, S n ? n a 1 ;当 q ? 1 时, S n ? (1)等比数列中, q =2,S99=77,求 a 3 ? a 6 ? ? ? a 99 =44 (2) ? ( ? C n ) 的值为__________(答:2046) ;
k n ?1 k ?0 10 n

a 1 (1 ? q )
n

1? q

?

a1 ? a n q 1? q

。如

特别提醒:等比数列前 n 项和公式有两种形式,为此在求等比数列前 n 项和时,首先要判断公比 q 是否为 1, 再由 q 的情况选择求和公式的形式, 当不能判断公比 q 是否为 1 时, 要对 q 分 q ? 1 和 q ? 1 两种情形讨论求解。 4.等比中项:若 a , A , b 成等比数列,那么 A 叫做 a 与 b 的等比中项。提醒:不是任何两数都有等比 中项, 只有同号两数才存在等比中项, 且有两个 ? a b 。 如已知两个正数 a , b ( a ? b ) 的等差中项为 A, 等比中项为 B,则 A 与 B 的大小关系为______(答:A>B) 提醒: (1)等比数列的通项公式及前 n 和公式中,涉及到 5 个元素: a 1 、 q 、 n 、 a n 及 S n ,其 中 a 1 、 q 称作为基本元素。只要已知这 5 个元素中的任意 3 个,便可求出其余 2 个,即知 3 求 2; (2) 为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为?, 但偶数个数成等比时,不能设为?
2

a q
2

,

a q

, a , a q , a q ?(公比为 q ) ;

2

a q
3

,

a q

, aq , aq

3

,?,因公比不一定为正数,只有公比为正时才可

如此设,且公比为 q 。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与 第四个数的和是 16,第二个数与第三个数的和为 12,求此四个数。 (答:15,,9,3,1 或 0,4,8,16) 等比数列的性质: 1.当 m ? n ? p ? q 时,则有 a m ?a n ? a p ?a q ,特别地,当 m ? n ? 2 p 时,则有 a m ?a n ? a p .如(1)
2

在等比数列 { a n } 中, a 3 ? a 8 ? 1 2 4, a 4 a 7 ? ? 5 1 2 ,公比 q 是整数,则 a 1 0 =___(答 512) ; (2)各项均为正数的等比数列 { a n } 中,若 a 5 ? a 6 ? 9 ,则 lo g 3 a1 ? lo g 3 a 2 ? ? ? lo g 3 a1 0 ?
*

10

{ 2.若 { a n } 是等比数列,则 { | a n |} 、{ a p ? n q } ( p , q ? N ) 、{ k a n } 成等比数列;若 { a n }、b n } 成等比数列,
{ 则{a n bn } 、 an bn } 成等比数列; 若 { a n } 是等比数列, 且公比 q ? ? 1 , 则数列 S n , S 2 n ? S n , S 3 n ? S 2 n , ?

也是等比数列。当 q ? ? 1 ,且 n 为偶数时,数列 S n , S 2 n ? S n , S 3 n ? S 2 n ,?是常数数列 0,它不是等 比 数 列 . 如 ( 1 ) 已 知 a ? 0 且 a ? 1 , 设 数 列 { xn } 满 足 l o g x a
x1 ? x 2 ? ? ? x
1 0 0

n1 ?

?

? 1
100

l oaxg n( n ? N * ) , 且

? 100

,则 x1 0 1 ? x1 0 2 ? ? ? x 2 0 0 ?

. (答: 1 0 0 a

) ;

(2)在等比数列 { a n } 中, S n 为其前 n 项和,若 S 30 ? 13 S 10 , S 10 ? S 30 ? 140 ,则 S 20 的值为______ (答:40) 3.若 a 1 ? 0 , q ? 1 ,则 { a n } 为递增数列;若 a 1 ? 0 , q ? 1 , 则 { a n } 为递减数列;若 a 1 ? 0 , 0 ? q ? 1 , 则 { a n } 为递减数列; a 1 ? 0 , 0 ? q ? 1 , 则 { a n } 为递增数列; q ? 0 , { a n } 为摆动数列; q ? 1 , 若 若 则 若 则 { a n } 为常数列. 4.当 q ? 1 时, S n ?
? a1 1? q q
n

?

a1 1? q

? aq

n

? b ,这里 a ? b ? 0 ,但 a ? 0, b ? 0 ,这是等比数列前 n

项和公式的一个特征,据此很容易根据 S n ,判断数列 { a n } 是否为等比数列。如若 { a n } 是等比数列, 且 S n ? 3 n ? r ,则 r =
m

(答:-1)

n 5. S m ? n ? S m ? q S n ? S n ? q S m .如设等比数列 { a n } 的公比为 q , n 项和为 S n , S n ? 1 , S n , S n ? 2 成 前 若

等差数列,则 q 的值为_____(答:-2) 6.在等比数列 { a n } 中,当项数为偶数 2 n 时, S 偶 ? q S 奇 ;项数为奇数 2 n ? 1 时, S 奇 ? a 1 ? q S 偶 .
3

7.如果数列 { a n } 既成等差数列又成等比数列,那么数列 { a n } 是非零常数数列,故常数数列 { a n } 仅是此 数列既成等差数列又成等比数列的必要非充分条件。如设数列 ? a n ? 的前 n 项和为 S n ( n ? N ) 关于 , 数列 ? a n ? 有下列三个命题:①若 a n ? a n ? 1
Sn ? a n
2

(n ? N )

,则 ? a n ? 既是等差数列又是等比数列;②若
?1?

? b n ? a、 ? R b

? ,则 ? a n ? 是等差数列;③若 S n
(答:②③)

? ? 1 ? n ,则 ? a n ? 是等比数列。这些命

题中,真命题的序号是 五.数列的通项的求法:

⑴公式法:①等差数列通项公式;②等比数列通项公式。如已知数列 3 一个通项公式:__________(答: a n ? 2 n ? 1 ?
1 2
n ?1

1 4

,5

1 8

,7

1 16

,9

1 32

, ? 试写出其


1

⑵已知 S n (即 a1 ? a 2 ? ? ? a n ? f ( n ) )求 a n ,用作差法: a n ?

( ? S , ?nS? 1), ( n ? 2 ) 。如 S 3, n ? 1 ①已知 { a } 的前 n 项和满足 lo g ( S ? 1) ? n ? 1 ,求 a (答: a ? ? ) ; 2 ,n ? 2 1 1 1 14, n ? 1 a ?? ? a ? 2 n ? 5 ,求 a (答: a ? ? ②数列 { a } 满足 a ? ) 2 ,n ? 2 2 2 2
n n ?1

n

2

n

n

n

n

n

1

2

2

n

n

n

n

n ?1

⑶已知 a 1 ?a 2 ?? ?a n ? f ( n ) 求 a n ,用作商法: a n ? ?
2

? f (1), ( n ? 1) ? f (n) 。如数列 { a n } 中, a 1 ? 1, 对所 , (n ? 2) ? f ( n ? 1) ?
61 16

有的 n ? 2 都有 a 1 a 2 a 3 ? a n ? n ,则 a 3 ? a 5 ? ______(答:



⑷若 a n ? 1 ? a n ? f ( n ) 求 a n 用累加法: a n ? ( a n ? a n ? 1 ) ? ( a n ? 1 ? a n ? 2 ) ? ? ? ( a 2 ? a 1 )
? a 1 ( n ? 2 ) 。如数列 { a n } 满足 a 1 ? 1 , a n ? a n ? 1 ?

1 n ?1 ? n

(n ? 2)

,则 a n ?

n ?1 ?

2 ? 1)

⑸已知

a n ?1 an

? f ( n ) 求 a n ,用累乘法: a n ?
2

an a n ?1

?

a n ?1 an?2

?? ?

a2 a1
4

? a 1 ( n ? 2 ) 。如已知数列 { a n } 中,

a 1 ? 2 ,前 n 项和 S n ,若 S n ? n a n ,求 a n (答: a n ?

n ( n ? 1)



⑹已知递推关系求 a n ,用构造法(构造等差、等比数列) 。特别地, (1)形如 a n ? ka n ? 1 ? b 、
a n ? k a n ? 1 ? b ( k , b 为常数)的递推数列都可以用待定系数法转化为公比为 k 的等比数列后,再求
n

a n 。如①已知 a 1 ? 1, a n ? 3 a n ? 1 ? 2 ,求 a n (答: a n ? 2 ?3

n ?1

?1) ;②已知 a 1 ? 1, a n ? 3 a n ? 1 ? 2 ,
n

求 a n (答: a n ? 5 ?3 知 a 1 ? 1, a n ?
a n ?1

n ?1

?2

n ?1

)(2)形如 a n ? ;
1

a n ?1 k a
n ?1

b ?

的递推数列都可以用倒数法求通项。如①已
an ? a n a n ?1 ,

3 a n ?1 ? 1
1 n
2

,求 a n (答:a n ?

3n ? 2

) ;②已知数列满足 a 1 =1, a n ? 1 ?

求 a n (答: a n ?



注意: (1)用 a n ? S n ? S n ? 1 求数列的通项公式时,你注意到此等式成立的条件了吗?( n ? 2 , 当 n ? 1 时, a 1 ? S 1 ) (2)一般地当已知条件中含有 a n 与 S n 的混合关系时,常需运用关系式 ;
a n ? S n ? S n ? 1 , 先将已 知条件 转化为只 含 a n 或 S n 的 关系式 ,然后再 求解。 如 数 列 { a n } 满足
a1 ? 4 , S n ? S n ? 1 ? 5 3 a n ? 1,求 a n (答: a n ?

?

4, n ? 1 ) n ?1 3 ?4 , n ? 2

六.数列求和的常用方法:
4

1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式, 务必检查其公比与 1 的关系,必要时需分类讨论.;③常用公式: 1 ? 2 ? 3 ? ? ? n ? 1 n ( n ? 1) ,
2
3 3 3 3 2 2 2 1 ? 2 ? ? ? n ? 1 n ( n ? 1)( 2 n ? 1) ,1 ? 2 ? 3 ? ? ? n ? [ 6

n ( n ? 1) 2
4 ?1
n

] .如(1)等比数列 { a n } 的前

2

n 项和 Sn=2 -1,则 a 1 ? a 2 ? a 3 ? ? ? a n =_____(答:
2 2 2 2



) ;

3

(2)计算机是将信息转换成二进制数进行处理的。二进制即“逢 2 进 1” ,如 (1101 ) 2 表示二进制数, 将它转换成十进制形式是 1 ? 2 3 ? 1 ? 2 2 ? 0 ? 2 1 ? 1 ? 2 0 ? 13 ,那么将二进制 (111 ? 11 ) 2 转换成十进制数
? ?? ??
2005 个 1

?1 ) 是_______(答: 2 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,
2005

再运用公式法求和. 如求: S n ? ? 1 ? 3 ? 5 ? 7 ? ? ? ( ? 1) (2 n ? 1) (答: ( ? 1) ? n )
n

n

3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则 常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 n 和公式的推导方法). 如已 知 f (x) ?
x
2 2

1? x

,则 f (1) ? f ( 2 ) ? f (3) ? f ( 4 ) ? f ( ) ? f ( ) ? f ( ) =______(答:
2 3 4

1

1

1

7 2



4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那 么常选用错位相减法(这也是等比数列前 n 和公式的推导方法). 如(1)设 { a n } 为等比数列, T n ? n a1 ? ( n ? 1) a 2 ? ? ? 2 a n ? 1 ? a n ,已知 T1 ? 1 , T 2 ? 4 ,①求数
n ?1 列 { a n } 的首项和公比;②求数列 {T n } 的通项公式.(答:① a 1 ? 1 , q ? 2 ;② T n ? 2 ? n ? 2 ) ;

(2)设函数 f ( x ) ? ( x ? 1) , g ( x ) ? 4 ( x ? 1) ,数列 { a n } 满足: a 1 ? 2 , f ( a n ) ? ( a n ?
2

a n ? 1 ) g ( a n )( n ? N ? ) ,①求证:数列 { a n ? 1} 是等比数列;②令 h ( x ) ? ( a 1 ? 1) x ? ( a 2 ? 1) x
? ? ? ( a n ? 1) x ,求函数 h ( x ) 在点 x ?
n

2

8 3

2 处的导数 h ? ( ) ,并比较 h ? ( ) 与 2 n ? n 的大小。 (答:

8

8

3

3

2 2 ①略; h ? ( ) ? ( n ? 1) ?2 ? 1 , n ? 1 时,h ? ( ) = 2 n ? n ; n ? 2 时,h ? ( ) < 2 n ? n ; n ? 3 ② 当 当 当
n

8

8

8

3
2 时, h ? ( ) > 2 n ? n )

3

3

8

3

5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常 选用裂项相消法求和.常用裂项形式有: ① ③
1 k
2

1 1 ? 1 ? 1 ; ② ? 1 (1 ? 1 ) ; n ( n ? 1) n n ?1 n(n ? k ) k n n? k
? 1 k ?1
2

?

1

2 k ?1

(

1

?

1 k ?1

),

1 k

?

1 k ?1

?

1 ( k ? 1) k

?

1 k n
2

?

1 ( k ? 1) k ? 1 n! ?

? 1

1 k ?1

?

1 k





1 n ( n ? 1)( n ? 2 )

?

1

2 n ( n ? 1)

[

1

?

1 ( n ? 1)( n ? 2 )

] ;⑤

( n ? 1) !

( n ? 1) !



⑥ 2( n ? 1 ? 如(1)求和:

n) ?
1 1? 4 ?

2 n ?
1 4?7

n ?1
?? ?

?

1 ? n
1

2 n ? n ?1
?

? 2( n ?

n ? 1) .
n 3n ? 1

(3 n ? 2 ) ? (3 n ? 1)

(答:

) ;

(2)在数列 { a n } 中, a n ?

1 n ? n ?1

,且 Sn=9,则 n=_____(答:99) ;

6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如

5

①求数列 1×4,2×5,3×6,?, n ? ( n ? 3) ,?前 n 项和 S n = ②求和: 1 ?
1 1? 2 ? 1 1? 2 ? 3 ?? ? 1 1? 2 ? 3?? ? n ?

n ( n ? 1)( n ? 5 ) 3 2n n ?1

) ;

答:



七. “分期付款”“森林木材”型应用问题 、 1.这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指” ,细心 计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决. 2.利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金 p 元, 每期利率为 r ,则 n 期后本利和为: S n ? p (1 ? r ) ? p (1 ? 2 r ) ? ? p (1 ? n r )
? p (n ? n ( n ? 1) 2 r ) (等差数列问题) ;②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款

(向银行借款) p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日, 如此下去,分 n 期还清。如果每期利率为 r (按复利) 那么每期等额还款 x 元应满足: ,
p (1 ? r ) ? x (1 ? r )
n n ?1

? x (1 ? r )

n?2

? ? ? x (1 ? r ) ? x (等比数列问题).

6



更多相关文章:
数列知识点题型方法总结22.doc
数列知识点题型方法总结22 - 数列知识点题型方法总复习 一.数列的概念:数列是
高中数列知识点、常用方法及典型题型总结.pdf
高中数列知识点、常用方法及典型题型总结 - 数列 数列概念 1.数列的定义:按照
高中数列知识点、解题方法题型大全.doc
高中数列知识点、解题方法题型大全 - 一 高中数列知识点总结 1. 等差数列的
数列知识点题型方法总结.doc
数列知识点题型方法总结_数学_高中教育_教育专区。文科数学数列知识点总结+题型
数列知识点总结题型归纳.doc
数列知识点总结题型归纳 - 数列 一、数列的概念 (1)数列定义:按一定次序排
高三数列知识点题型总结(文科).doc
高三数列知识点题型总结(文科) - 数列考点总结 第一部分 求数列的通项公式 一、数列的相关概念与表示方法(见辅导书) 二、求数列的通项公式 四种基本数列:...
数列知识点总结题型归纳.doc
数列知识点总结题型归纳 - 数列 一、数列的概念 (1)数列定义:按一定次序排
数列知识点总结题型归纳.doc
数列知识点总结题型归纳 - 数列 一、数列的概念 (1)数列定义:按一定次序排
数列知识点总结题型归纳 - 含答案.doc
数列知识点总结题型归纳 - 含答案 - 数列 一、等差数列 题型一、等差数列定
数列知识点总结题型归纳.doc
数列知识点总结题型归纳 - 数列 一、数列的概念 (1)数列定义:按一定次序排
数列知识点总结题型归纳..doc
归纳,数列题型总结归纳,数列知识点归纳,高中数列知识点归纳,数列题型及解题方法 数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中...
数列知识点总结题型归纳 含答案.doc
数列知识点总结题型归纳 含答案 - 数列 一、等差数列 题型一、等差数列定义:
高三总复习数列知识点题型归纳总结.doc
高三总复习数列知识点题型归纳总结 - 高三总复习---数列 一、数列的概念 (
数列知识点总结题型归纳.doc
数列知识点总结题型归纳 - 兴平市秦岭中学 2018.7.28 数列讲义 一、
数列知识点总结题型归纳总结.doc
数列知识点总结题型归纳总结 - 让学习成为一种习惯! 高三总复习---数列 一
数列知识点总结题型归纳.doc
数列知识点总结题型归纳 - 让学习成为一种习惯! 数列 一、数列的概念 (1)
数列知识点总结题型归纳.doc
数列知识点总结题型归纳_数学_高中教育_教育专区。数列 一、数列的概念 (1)
数列知识点大全和经典试题的解题方法归纳.doc
数列知识点和常用的解题方法归纳 一、 等差数列的...例 4 以前的例题.例 5 考查考生对于等差数列作为...S1 ? 22 ? 2 ? 22 ? 6, S2 ? 8 a3 ? ...
高考数学数列知识点题型总结.doc
高考数学数列知识点题型总结 - 高考数学数列知识点题型总结 等差数列 知
第2章等差数列知识点总结题型归纳.doc
第2章等差数列知识点总结题型归纳 - 等差数列 一.等差数列知识点: 等差数列
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图