9512.net
甜梦文库
当前位置:首页 >> 数学 >>

3.3


3.3 两角和与差及二倍角公式
一. 【复习要求】
1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联. 2.掌握二倍角的正弦、余弦、正切公式. 2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.

二、 【知识回顾】 1.两角和与差的三角函数
sin(? ? ? ) ? cos(? ? ? ) ? tan(? ? ? ) ?
; sin(? ? ? ) ? ; cos(? ? ? ) ? ; tan(? ? ? ) ? ; ; ;

2. 二倍角公式: 在 sin(? ? ? ),cos(? ? ? ), tan(? ? ? ) 中令 ? ? ? , 可得相应的二倍角公式。
sin 2? ?
; = 。 =

cos 2? ?
tan 2? ?

3.降幂公式
sin 2 ? ?


cos 2 ? ?

.

注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用

4.辅助角公式
(其中 a, b 不能同时为 0) y ? a sin x ? b cos x ? a 2 ? b 2 sin( x ? ? ) , 证明: y ? sin x ? cos x ?
a ?b (
2 2

a a ?b
2 2

sin x ?

b a ?b
2 2

cos x )

? a 2 ? b 2 (cos ? sin x ? sin ? cos x)

? a 2 ? b 2 sin( x ? ? )
其中, cos ? ?
a a ?b
2 2

, sin ? ?

b a ?b
2 2

, tan ? ?

b 且角 ? 终边过点 (a, b) a

在使用时,不必死记结论,而重在这种收缩(合二为一)思想 如: sin ? ? cos ? ? ; sin ? ? cos ? ? 。

5.公式的使用技巧
(1)连续应用: sin(? ? ? ? ? ) ? sin[(? ? ? ) ? ? ] ? sin(? ? ? ) cos ? ? cos(? ? ? )sin ? (2) “1”的代换: sin ? ? cos ? ? 1 , sin
2 2

?
2

? 1, tan

?
4

?1

(3)收缩代换: y ? sin x ? cos x ?

a 2 ? b 2 sin( x ? ? ) , (其中 a, b 不能同时为 0)
第1页 共6页 3.3 两角和与差及二倍角公式

(4)公式的变形:

tan(? ? ? ) ? tan(? ? ? ) ?

tan ? ? tan ? ? tan(? ? ? ) ? tan ? ? tan ? ? tan(? ? ? ) tan ? tan ? 1 ? tan ? tan ? tan ? ? tan ? ? tan(? ? ? ) ? tan ? ? tan ? ? tan(? ? ? ) tan ? tan ? 1 ? tan ? tan ?
。 。

如: tan 95? ? tan 35? ? 3 tan 95? tan 35? ?

tan 70? ? tan 50? ? 3 tan 70? tan 50? ?
(5)角的变换(拆角与配角技巧)

? ? 2?

?
2



? ? (? ? ? ) ? ? , ? ? ? ? (? ? ? ) , ? ? [ (? ? ? ) ? (? ? ?, )]

1

? ? (? ?

?
4

)?

?
4



?
4

?? ?

?

? ( ? ? ) , ? ? [(? ? ? ) ? (? ? ? )] , 2 4 2

?

2

1

(6)二倍角公式的逆用及常见变形 二倍角的正用、逆用、变形应用是公式的三种主要使用方法,特别是二倍角的余弦公式, 它在求值、化简、证明中有广泛的应用,解题时应根据不同的需要,灵活选取。 ① sin ? ? 2sin

?

? 2 5.三角函数式的化简
1 ? tan
2

③ tan ? ?

2 tan

2 ?

cos

?
2

;② cos ? ? cos 2

?
2

? sin 2

?
2

? 1 ? 2sin 2

?
2

? 2cos 2

?
2

?1

2 ;④ 1 ? sin 2? ? (sin ? ? cos ?) 2 ;⑤ (sin ? ? cos ? )2 ? (sin ? ? cos ? )2 ? 2

(1)化简方法:①直接应用公式进行降次、消项;②化切为弦,异名化同名,异角化同角;③ 三 角公式的逆用等。④降幂或升幂 (2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少; ④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

6.三角函数的求值类型有三类
(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变 换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于 “变角” ,如 ? ? ( ? ? ? ) ? ? , 2? ? ( ? ? ? ) ? ( ? ? ? ) 等,把所求角用含已知 角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,关键也在于“变角” ,把所求角用含已知角的 式子表示,由所得的函数值结合所求角的范围或函数的单调性求得角。

7.三角等式的证明
(1)三角恒等式的证明 根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一、转换命题等方法,使 等式两端化“异”为“同” ; (2)三角条件等式的证明 通过观察,发现已知条件和待证等式间的关系。若从结论开始,通过变形,将已知表达式代 入得出结论,采用代入法;若从条件开始,化简条件,将其代入要证表达式中,通过约分抵消等 消去某些项,从而得出结论,采用消参法;若这两种方法都证不出来,可采用分析法进行证明。

第2页 共6页

3.3 两角和与差及二倍角公式

三. 【例题精讲】 考点一、给角求值
例.求值: [2 sin 50 ? sin10 (1 ? 3 tan10 )] ? 2 sin 80
? ? ? 2 ?

(2)sin(θ +75°)+cos(θ +45°)- 3·cos(θ +15°).

【反思归纳】对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: ①化为特殊角的三角函数值 ②化为正负相消的项,消去求值 ③化分子、分母使之出现公约数 进行约分而求值。

考点二、给值求值
例 3.已知 tan 2? ? ?2 2, ? ? 2? ? 2? ,求

2 cos 2

? ? sin ? ? 1 2 的值. ? 2 sin(? ? ) 4

例 4.已知 0 ? ? ?

?
4

?? ?

3?

? 3 3? 5 , cos( ? ? ) ? , sin( ? ? ) ? ,求 sin(? ? ? ) 的值 4 4 5 4 13

考点三、给值求角
探究 给值求值问题(已知某角的三角函数值,求另一角的三角函数值) π 3π ?π ? 3 ? 3π ? 5 例2 已知0<β < <α < ,cos? -α ?= ,sin? +β ?= ,求sin(α +β )的值. 4 4 ?4 ? 5 ? 4 ? 13

第3页 共6页

3.3 两角和与差及二倍角公式

变式迁移2 已知tan?

?π +α ?=2,tan β =1. ? 2 ?4 ?

(1)求tan α 的值; sin? α +β ? -2sin α cos β (2)求 的值. 2sin α sin β +cos? α +β ?

[来源:学,科,网]

π α 1 2 例3 已知0<α < <β <π ,tan = ,cos(β -α )= . 2 2 2 10 (1)求sin α 的值; (2)求β 的值.

变式迁移3 若sin A=

5 10 ,sin B= ,且A、B均为钝角,求A+B的值. 5 10

考点四、三角函数式的化简与证明
例.已知 f ( x) ?

1 ? cos x ? sin x 1 ? sin x ? cos x

?

1 ? cos x ? sin x 1 ? sin x ? cos x

,且 x ? 2k? ?

?
2

,k ?Z

(1) 化简 f ( x )

(2) 是否存在 x ,使 tan

x 2

1 ? tan 2
? f ( x) 与

x 2 相等?若存在,求出 x ;若不存在,说明理由。

sin x

2 5 例 (14分)已知向量a=(cos α ,sin α ),b=(cos β ,sin β ),|a-b|= . 5 (1)求 cos(α-β)的值; 5 π π (2)若- <β<0<α< ,且 sin β=- ,求 sin α 的值. 2 2 13

第4页 共6页

3.3 两角和与差及二倍角公式

【练习】
1. 已知 tan ? ? 2 ,则

sin 2? ? cos 2? ? 1 ? cos 2 ?

2. 求值: tan 20? tan 60? ? tan 60? tan10? ? tan10? tan 20? ?

3. 在 ?ABC 中,已知 cos(

?
4

? A) ?

3 ,则 cos 2 A 的值为 5

4. (08 年高考山东卷改编)已知 cos(? ?

?
6

) ? sin ? ?

4 3 7? ,则 sin(? ? )= 5 6

5. (07 年高考江苏卷)若 cos(? ? ? ) ?

1 3 , cos(? ? ? ) ? ,则 tan ? ? tan ? ? 5 5

6. (08 年江苏卷)如图,在平面直角坐标第 xOy 中,以 Ox 轴为始边作两 个锐角 ?、? ,它们的终边分别与单位圆相交于 A、B 两点,已知 A、B 的横坐标分别为

2 2 5 , , 10 5

(1)求 tan(? ? ? ) 的值; (2)求 ? ? 2? 的值

第5页 共6页

3.3 两角和与差及二倍角公式

? ? 1 1 ? 7. 已知 ?、? 为锐角,向量 a ? (cos ? ,sin ? ) , b ? (cos ? ,sin ? ) , c ? ( , ? ) .

2

2

(1) 若 a ? b ?

? ?

2 ? ? ,a ?c ? 2

3 ?1 ,求角 2? ? ? 的值; 4

(2) 若 a ? b ? c ,求 tan ? 的值.

?

?

?

8. 若 cos ? ?

1 47 , cos(? ? ? ) ? ? ,且 ?、? 都是锐角,求 cos ? 17 51

? ? 9. (2010 淮安调研,16)已知 a ? (cos ? ,sin ? ) , b ? (cos ? ,sin ? ) .
(1) 若 ? ? ? ?

?

6 ? ? ? 4 (2) 若 a ? b ? , ? ? ,求 tan(? ? ? ) 的值. 5 8

,求 a ? b 的值.

? ?

第6页 共6页

3.3 两角和与差及二倍角公式



更多相关文章:
高中物理选修3-3知识总结.doc
高中物理 3-3 知识点总结一、分子动理论 1、物体是由大量分子组成的 微观量:...布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定...
CCSV3.3的使用方法_图文.doc
CCSV3.3的使用方法_信息与通信_工程科技_专业资料。CCSV3.3的使用方法,只涉及纯软件仿真 一. 软件部分 1. 双击桌面上的 Setup CCStudio v3.3 图标如下图:...
高中物理3-3复习知识点(详细).doc
3-3 复习 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积 V0...布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定...
3.3无限大容量电源供电系统短路电流计算_图文.ppt
3.3无限大容量电源供电系统短路电流计算 - 3.3 无限大容量电源供电系统短路
3-3检测.doc
3-3检测 - 3-3 检测 一、选择题(本大题共 12 小题,每小题 4 分,
CCS3.3配置步骤.doc
CCS3.3配置步骤 - CCS3.3 配置 F28335 步骤 1. 先打开
舒尔特表格 33.doc
舒尔特表格 33 - 1 7 3 8 5 6 9 4 2 2 6 4 5 1 8 9 7 3 7 1 6 4 9 3 5 2 8 1 2 6 7 4 8 3 9 5 ...
3-3液体_图文.ppt
3-3液体 - 课前检测: 1.分子间作用力的规律是什么? r>r0时,
3-3热学知识点总结.doc
高中物理选修 3-3 知识点梳理一、知识网络 分子直径数量级 物质是由大量分子...天然存 在的液晶不多,多数液晶为人工合成. 3)向液晶参入少量多色性染料,染料...
IEC 60721-3-3_图文.pdf
IEC 60721-3-3 - 2014-05-28; Wang, Sen; SEDL, I DT LD P R&D TJ 3 2014-05-28; Wang, Sen; SEDL, I ...
街霸3.3出招表.doc
街霸3.3出招表 - 亚历克斯 ALEX 招数种类 投技 TC 招式名称 力量投
B3.3系列发动机介绍_图文.ppt
B3.3系列发动机介绍 - B3.3系列发动机介绍 康明斯东亚培训中心 B3.3 服务培训 2 目 录 1.B3.3主要性能参数 2.B3.3结构及布置 3.B3.3四大系统及流...
高中物理 选修3-3知识点.doc
选修33 考点汇编一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜
LC03-3.3中文资料.pdf
LC03-3.3中文资料 - 元器件交易网www.cecb2b.com Low Capacitance 3.3 Volt TVS for High Speed Interfaces PROTE...
SRDA3.3-4.TBT中文资料.pdf
-40 to +85 -55 to +150 Units Watts A °C °C °C Electrical Characteristics (T=25oC) SR DA3.3-4 Parameter Reverse Stand-Off Voltage Punch-...
E-L4973D3.3中文资料.pdf
? A A % % (2) 4.95 3.326 3.292 (2) 3.26
L4973D3.3.pdf
L4973D3.3 - ? L4973V3.3 - L4973V5.1 L4973D3.3 - L4973D5.1 3.5A STEP DOWN SWITCHING REGULATOR UP...
EN 61000-3-3中文版.doc
(见 4.3.2 和图 2) 最大电压变化: 3.3 最大电压变化:电压变化特性
CCS3.3入门使用教程.pdf
1 Code Composer Studio Tutorial V3.3 Tra
物理选修3-3知识点复习_图文.ppt
物理选修3-3知识点复习 - d ? 2? 3 固体、液体 d d d d 小球模型 3V 6V 3 ? 4? ? 气体 d 立方体模型 d d d? V 3 应用: 已知...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图