9512.net
甜梦文库
当前位置:首页 >> 数学 >>

空间立体几何高考知识点总结及经典题目


空间立体几何
知识点归纳:
1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2) 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2.一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。 正棱柱:底面多边形是正多边形的直棱柱。

正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3.空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 圆柱的表面积 : S ? 2? rl ? 2? r 2 圆台的表面积: 圆锥的表面积: S

? ? rl ? ? r 2
? 4? R2

S ? ? rl ? ? r 2 ? ? Rl ? ? R 2
? S底 ? h
1 V ? (S上 ? 3

球的表面积: S

4.空间几何体的体积公式 柱体的体积 : V 锥体的体积 : V ?

1 S ?h 3 底

台体的体积 :

S上S下 ? S 下 ) ? h

球体的体积: V

4 ? ? R3 3

5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图 和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2) (3)

直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平 面相交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平 行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为900 ,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线 和这个平面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个 (5)面面平行的判断:

①面面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平 面平行。 ②垂直于同一条直线的两个平面平行。 (6)面面垂直的判断: 面面垂直的判定定理:一个平面经过另一个平面的垂线,这两个平面互相垂直。 8.空间中直线与直线、直线与平面、平面与平面所成角 (1)异面直线所成的角 已知 a、b 是两条异面直线,经过空间任意一点 O,分别引直线 a′∥a,b′∥b,则 a′ 和 b′所成的锐角(或直角)叫做异面直线 a 和 b 所成的角. 异面直线所成的角的求法:通过直线的平移,把异面直线所成的角转化为平面内相交
o o 直线所成的角。异面直线所成角的范围: 0 ? ? ? 90 ;

(2)直线与平面所成的角 一条直线l与平面α 相交于 A,在直线l取一点 P(异于 A 点),过 P 作平面α 的垂线, 垂足为 O,则线段 AO 叫做直线 l 在平面α 内的射影,直线 l 与射影 AO 所成角就叫做直线 l
o o 与平面α 所成的角。直线与平面所成角的范围: 0 ? ? ? 90

(3)平面与平面所成角 二面角的定义:由一条棱出发的两个半平面组成的图形。 二面角的平面角:在二面角的棱上任取一点 O,过 O 分别在两个半平面内作棱的垂线 OA、 OB,则垂线 OA 与 OB 所成角就叫做二面角的平面角。二面角的平面角的范围:

0o ? ? ? 180o ;
求平面与平面所成角关键是找出二面角的平面角。方法有:①定义法;②垂面法;

基础巩固 一.三视图和空间几何体的表面积和体积
1.如图所示的是一个立体图形的三视图,此立体 图形的名称为( A.圆锥 B.圆柱 ) C.长方体 D.圆台

2.如图,图(1)(2)(3)是图(4)表示的几何体的三视图,其中图(1)是________,图(2)是 ________,图(3)是________(说出视图名称).

(1)

(2)

(3)

(4)

3.已知一个几何体是由上、下两部分构成的一个组合体,其三视图如图所示,则这个组 合体的上、下两部分分别是( A.上部是圆锥,下部是圆柱 C.上部是三棱锥,下部是四棱柱 ) B.上部是圆锥,下部是四棱柱 D.上部是三棱锥,下部是圆柱 )

4.下列几何体各自的三视图中,有且仅有两个视图相同的是(

A.①②

B.①③

C.①④

D.②④ )

5.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能 是( ...

6.某几何体的三视图如图所示,则该几何体的体积等于________.

7.如图是某几何体的三视图,则该几何体的体积为(

)

8.某几何体的三视图如图所示,则它的体积是( A. 8 ?

) D.

2? 3

B. 8 ?

?
3

C. 8 ? 2?

2? 3

9.某四棱锥的三视图如图所示,该四棱锥的表面积是( A.32 B.16+ 16 2 C.48

) D. 16 ? 32 2

10.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角 形,等腰三角形和菱形,则该几何体的体积为( ) A. 4 3 B. 4 C. 2 3 D. 2

2 3

第8题

第9题

正视图

侧视图

2

2
10 题
俯视图

11.某几何体的三视图如图所示,则其体积为______. 12.若某几何体的三视图(单位: cm )如图所示,则此几何体的体积等于______ cm3 . 13.某几何体的三视图如图所示,则该几何体的体积是______.

第 11 题

第 12 题

第 13 题

14.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,E,F 分别为线段 AA1,B1C 上的点,则三棱锥

D1-EDF 的体积为________.

15. 圆柱的轴截面是边长为 5 cm 的正方形 ABCD ,从 A 到 C 圆柱侧面上的最短距离为

____________ 16.底面直径和高都是 4 cm 的圆柱的侧面积为_________cm
2

二.空间中点、直线、平面的位置关系
17.如图,在空间四边形 ABCD 中,AD=BC=2,E、F 分别是 AB、CD 的中点,若 EF= 3,求异面直线 AD、

BC 所成角的大小.

18.如图 2-1-13,在正方体 ABCD-A1B1C1D1 中, (1)AC 和 DD1 所成的角是______; (3)AC 和 B1D1 所成的角是________; (2)AC 和 D1C1 所成的角是______; (4)AC 和 A1B 所成的角是________.

19.正方体 ABCD?A1B1C1D1 中,AB 的中点为 M,DD1 的中点为 N,异面直线 B1M 与 CN 所成的 角是___________

20.如图,空间四边形 ABCD 中,E、F、G、H 分别是 AB、BC、CD、DA 的中点. 求证:(1)EH∥平面 BCD;(2)BD∥平面 EFGH.

21.如图,在四棱锥 P-ABCD 中,ABCD 平行四边形,M,N 分别是 AB,PC 的中点.求证:

MN∥平面 PAD.

22.在正方体 ABCD-A1B1C1D1 中,M、N、P 分别是 C1C、B1C1、C1D1 的中点,求证:平面 MNP

∥平面 A1BD.

23.三棱锥 P-ABC 中,E,F,G 分别是 AB,AC,AP 的中点.证明平面 GFE∥平面 PCB.

24.如图所示,已知 E、F 分别是正方体 ABCD-A1B1C1D1 的棱 AA1、CC1 的中点,求证:四边 形 BED1F 是平行四边形.

25.如图所示,已知 P 是?ABCD 所在平面外一点,M、N 分别是 AB、PC 的中点,平面

PAD∩平面 PBC=l.
(1)求证:l∥BC; (2)MN 与平面 PAD 是否平行?试证明你的结论.

26.如图,在正方体 ABCD-A1B1C1D1 中,E,F 分别是棱 AB,BC 的中点,O 是底面 ABCD 的 中心,求证:EF⊥平面 BB1O.

27.在正方体 ABCD-A1B1C1D1 中,求证:A1C⊥平面 BC1D.

28.如图,在正方体 ABCD—A1B1C1D1 中, (1)求 A1B 与平面 AA1D1D 所成的角; (2)求 A1B 与平面 BB1D1D 所成的角.

29.在正方体 ABCD-A1B1C1D1 中,E,F 分别是 AA1,A1D1 的中点,求: (1)D1B 与平面 ABCD 所成角的余弦值; (2)EF 与平面 A1B1C1D1 所成的角.

30.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上异于 A、B 的任意一 点,求证:平面 PAC⊥平面 PBC.

31.如图,四棱锥 P-ABCD 的底面是正方形,PD⊥底面 ABCD,点 E 在棱 PB 上.求证:平 面 AEC⊥平面 PDB.

32.如图,已知四边形 ABCD 是正方形,PA⊥平面 ABCD. (1)求二面角 B-PA-D 平面角的度数; (2)求二面角 B-PA-C 平面角的度数.

33.在长方体 ABCD—A1B1C1D1 中,AB=AD=2 3,CC1= 2,二面角 C1—BD—C 的大小为 ________.

34.如图,正方体 A1B1C1D1—ABCD 中,EF 与异面直线 AC、A1D 都垂直相交. 求证:EF∥BD1.

35.如图,P 是△ABC 所在平面外的一点,且 PA⊥平面 ABC,平面 PAC⊥平面 PBC,求证:

BC⊥AC.


赞助商链接

更多相关文章:
新课标人教版高考数学立体几何1空间几何知识点及题型...
新课标人教版高考数学立体几何1空间几何知识点及题型精选总结 - - (有答案) -37_高三数学_数学_高中教育_教育专区。原创精品课件 立体几何初步本章知识结构与...
经典高考立体几何知识点例题(理科学生用)
经典高考立体几何知识点和例题(理科学生用)_数学_高中教育_教育专区。高考立体几何知识点和例题(理科学生用) 高考立体几何知识点总结整体知识框架: 一 、空间几何体...
高考立体几何知识点总结(详细)
高考立体几何知识点总结(详细)_数学_高中教育_教育专区。高考立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何...
立体几何知识点总结
立体几何知识点总结 - 立体几何 一、空间直角坐标系的建立及点的坐标表示(正交基底,唯一的有序实数组,坐标) 二、空间向量的运算法则(加减数乘,平行的判定,一个...
高考立体几何知识点总结(小题) (1)
高考立体几何知识点总结(小题) (1) - 高考立体几何知识点总结 一 、空间几何体:几种空间几何体的结构特征:1 多面体: 2 旋转体: (一) 柱 棱柱 图示 a a...
高考立体几何知识点总结(详细)---学生版_图文
立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型 1 多面体:___几何...F E’ ? b 第 6 页共 6 页 第 7 页共 7 页 2016 年高考数学理试题...
空间立体几何高考知识点总结
空间立体几何高考知识点总结_高二数学_数学_高中教育_教育专区。空间立体几何 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、...
2016年立体几何高考题汇总
2016 年文科数学立体几何高考题汇总 1.(2016 北京文 11)某四棱柱的三视图如图...2? 2 ? . 3 2 3 考点:线面位置关系及几何体体积的结束 11.(2016 山东...
高考立体几何知识点总结(详细) 精品
高考立体几何知识点总结(详细) 精品 - 收集整理:宋氏资料 2016-1-1 2016 高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个...
高考立体几何知识点总结(一)
高考立体几何知识点总结(一) - 立体几何知识点总结(一) 一,空间几何体的三视图和直观图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图