9512.net
甜梦文库
当前位置:首页 >> 理化生 >>

零点存在定理


想一想:求下列方程的根或函数的零点: 1.x + 1 = 0; 方程f ( x) = 0有实数根 2 2.x ? 2 x + 1 = 0; ?函数y = f ( x)图象与x轴有交点 x ?函数y = f ( x) 有零点 3. f ( x ) = 2 ? 8;

如果函数相应的方程的根不容 易求出且图象也不容易画出, 易求出且图象也不容易画出,例如 函数 f ( x ) = ln ( x ) + 2 x ? 6, 我们怎么 讨论它的零点呢? 讨论它的零点呢?

如图所示,我们要画一条连接A、B的连续 曲线,使这条曲线能成为函数的图象。显然这 样的曲线可以画无数条,我们来观察这些曲线 有什么共同的特呢?

我们来观察下面表格中的函数: 我们来观察下面表格中的函数:
函数 闭区间 闭区间端点函 数值的乘积 零点

y = 2x ?1
2

[0,1]

f (0) f (1) =?1<0
f (1) f (3) < 0和

1 x1 = 2
x1 = 2, x2 = 4

,和 , y = x ?6x+8 [13] [35] f (3) f (5) < 0

y = 2 ?2
x

[0, 2]
7 7 [ , ] 4 2

f (0) f (2) < 0
7 7 f( ) f( )<0 4 2

x1 = 1
x1 = 2

y =log2(2x?3)

观察以上四个函数,我们能得出什么样 的结论呢? 提示: 1.以上的函数在给定的区间内图象是连续的 还是不连续的? 2.闭区间两个端点函数值的乘积都满足什么 样的条件? 3.函数的零点有什么样的特点? 4.我们能得出什么样结论?

函数零点存在性定理: 续不断的一条曲线,并且有f ( a ) f ( b ) < 0, 如果函数y = f ( x ) 在 [ a, b ] 上的图象是连

即存在c ∈ ( a, b ),使得f ( c ) = 0,这个c也是 方程f ( x ) = 0的根.

那么,函数y = f ( x ),在区间( a, b )内有零点,

解:利用计算器,作出 x, f ( x )的对应值表:

例1.求函数f ( x) = ln x + 2 x ? 6的零点的个数.
x 1 2
-1.309

3
1.089

4

5

6

7

8

9
14.1972

f(x) -4

3.3863 5.6094 7.7918

9.9459 12.0794

区间 ( 2,3)内有零点. f ( x ) 在其他的区间是否存在零点 ? 我们先 来看这个函数的图象 :

  由表可知f ( 2 ) < 0, f ( 3) > 0, 则f ( 2 ) f ( 3) < 0, 说明f ( x ) 在

从这个图象我们看到, 从这个图象我们看到 这个函数在定义域内是单 调增函数,那么我们怎样证 调增函数 那么我们怎样证 明呢? 明呢

练习 证明f ( x) = lg x + x ? 8有且只有一个零点. 1.
证明:Q f (1) = ?7, f (10 ) = 3,∴ f (1) f (10 ) < 0, ∴函数f ( x ) = lg x + x ? 8在 (1,3)内有零点, Q y = lg x在( 0,+∞) 是增函数,
∴ f ( x ) = lg x + x ? 8在 ( 0,+∞ )

y = x ? 8在( 0,+∞) 是增函数,

∴ f ( x) = lg x + x ? 8有且只 有一个零点.

是增函数,

思考:以上两个问题中方程的根所在区间的范围
能否进一步缩小?

知能训练: 知能训练: 课堂小结:
1 2.证明f ( x ) = x + ? 3在 ( 0, ∞ ) 上有两个零点. + x

1.学会由函数解析式讨论零点的个数, 证明零点的个数。 2.思想方法:函数方程思想,数形结合 思想,分类讨论思想

课后作业: 课后作业:
课本P86练习2.



更多相关文章:
零点存在定理.doc
零点存在定理 - 考试,高三二轮专题,零点存在定理... 零点存在定理_数学_自然科学_专业资料。考试,高三二轮专题,零点存在定理 导数专题系列 零点存在定理主备人:杨海霞...
函数零点存在定理.doc
函数零点存在定理 - ? 函数零点存在定理: 一般地,如果函数 y=f(x)
零点存在定理_图文.ppt
零点存在定理_理化生_高中教育_教育专区。零点存在定理 想一想:求下列方程的根或
零点存在定理的教案.doc
零点存在定理的教案 - 教案 课题:零点存在定理 授课人: 一、内容及内容解析:
零点存在定理_图文.ppt
零点存在定理 - 零点存在定理习题课 一、课题导入 上节课学习了函数零点的概念及其判定, 那么针对一般函数的零点问题又如何判 断? ? ? ? 二、学习...
高一数学函数零点存在定理.doc
高一数学函数零点的存在性定理 - 3.1.2 函数零点的存在性定理 (一)教学目标 1.知识与技能 体验零点存在定理的形成过程, 理解零点存在定理, 并能应用它探究...
函数零点存在定理_图文.ppt
函数零点存在定理 - 高一数学必修一函数零点的存在性定理课件... 函数零点存在定理_数学_高中教育_教育专区。高一数学必修一函数零点的存在性定理课件 ...
零点存在定理_图文.ppt
零点存在定理 - f ( x) ? 0 y ? f(x ) ; 学习目标: 1.了解函数零点定义及函数零点与方程的根的联系; 2.理解并会用函数在某个区间上存在零点的...
高中数学必修一 零点存在定理及典例.doc
高中数学必修一 零点存在定理及典例 - 零点存在定理 如果函数 y = f
d零点存在定理_图文.ppt
d零点存在定理 - 问题提出1 1.对于数学关系式:2x-1=0与 y=2x-1
零点存在定理的应用.doc
零点存在定理的应用_高一数学_数学_高中教育_教育专区。葛沽一中整体建构教学模式
零点存在定理_图文.ppt
零点存在定理 - 函数的零点和方程的根 y ? f ? x? ? f ? x?
必修1教案3.1.2函数零点存在定理.doc
必修1教案3.1.2函数零点的存在性定理 - 3.1.2 函数零点的存在性定理 (一)教学目标 1.知识与技能 体验零点存在定理的形成过程, 理解零点存在定理, 并能...
(四)连续零点存在定理_图文.ppt
(四)连续零点存在定理 - 函数的连续性与间断 y N ?y y ? f ( x
A42零点存在定理定.pdf
A42零点存在定理定 - 1 零点存在定理的表层应用定 1 : 已知函数
高中数学零点存在定理教学设计新人教版必修1.doc
高中数学零点存在定理教学设计新人教版必修1 - 2014 年高中数学 零点存在定理教学设计 新人教版必修 1 一、内容及其解析 (一)内容:零点存在定理. (二)...
浅析放缩法在应用零点存在判定定理时的作用_图文.pdf
浅析放缩法在应用零点存在判定定理时的作用 - 解题研究 J I E T I YAN J I U 浅析放缩法在应用零点存在判定定理时的作用 李素波 姚芝英 (山西省平定县...
方程的根与零点存在定理课件_图文.ppt
方程的根与零点存在定理课件_数学_高中教育_教育专区。 3.1.1方程的根与 函
零点存在定理_图文.ppt
零点存在定理 - 零点存在定理 勘根定理) (勘根定理) 1 复习: 函数零
e零点存在定理_图文.ppt
e零点存在定理 - f ( x) ? 0 y ? f ( x) 数学组授课教师:
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图