9512.net
甜梦文库
当前位置:首页 >> 高一数学 >>

【优品】高中数学人教版必修1+2.2.1对数与对数运算+课件(系列三)


人教版 必修1

第二章 基本初等函数(I)
2.2 对数函数 2.2.1 对数与对数运算
第二课时 对数的运算性质

学习目标
学 习 目 标 1.掌握对数的运算性质,并能运 用运算性质化简、求值. 2.了解对数的换底公式及其应 用. 3.初步掌握对数在生活中的应 用. 思 维 脉 络

1.对数的运算性质
条件 a>0,且 a ≠1,M> 0,N> 0 loga(M· N)=logaM+loga N 性质 loga N =logaM-logaN logaMn=nloga M(n∈R)
M

做一做
下列各式正确的是( ) A.loga(M+N)=logaM+logaN(M>0,N>0) B.loga(M· N)=logaM· logaN(M>0,N>0) lo g C. =loga (M>0,N>0)
lo g

D.logaM-logaN=loga (M>0,N>0) 答案:D




2.换底公式

logab=log (a>0,且a≠1;c>0,且c≠1;b>0). log

做一做
1 计算:log3 +lg 100-ln 1+log28= . 27 解析:原式=log33-3+lg 102-0+log223=-3+2+3=2. 答案:2 思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画 “×”. (1)(-2)3=-8可化成log(-2)(-8)=3. ( ) (2)log3[(-4)×(-5)]=log3(-4)+log3(-5). ( ) (3)log2(-3)2=2log2(-3). ( ) (4)lg 2+lg 5=1. ( ) 2 (5)log48= log23. ( ) 3 答案:(1)× (2)× (3)× (4)√ (5)×

探究一 对数运算性质的应用
【例 1】计算下列各式的值: (1)log2 (2)lg
7 96 2 52+ lg 3

+log224- log284;
2

1

8+lg 5· lg 20+(lg 2) 2.
1 1 √7×24 =log2 =- . √96× √84 √2 2

分析:利用对数的运算性质进行计算 . 解:(1)(方法一 )原式=log2 (方法二 )原式 1 7 1 = log2 +log2(23×3)- log2(22×3×7) = log27- log2(25×3)+3+log23- 1- log23- log27=- ×5- log23+2+ l og23=- +2=- . (2)原式 =2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2 =2(lg 5+lg 2)+lg 5+lg 2(lg 5+lg 2) =2+lg 5+lg 2=2+1= 3.
2 2 2 5 2 1 2 2 2 2 2 2 1 96 1 2 1 1 1 1 1

变式训练 1 计算下列各式的值: 7 (1)lg 14-2lg 3+lg 7-lg 18; (2)
lg243 lg9

.
7

解:(1)lg 14-2lg 3+lg 7-lg 18=lg(2×7)-2(lg 7-lg 3)+lg 7lg(2×9)=lg 2+lg 7-2lg 7+2lg 3+lg 7-lg 2-2lg 3=0. (2)
lg243 lg9

= lg 32 = 2lg3 = 2.

lg 35

5lg3

5

探究二 换底公式的应用
【例 2】 计算下列各式的值: (1)log89· log2732; 解:(1)原式= (2)原式 = =
lg3 2lg2 lg2 lg3 lg9 lg2 lg3 10

(2)(log43+log83)
lg32

.

分析:用换底公式将对数换为同底的对数后再化简求值 .
lg8 lg27 3lg2 3lg3 lg3 lg3 lg2 lg3 lg4 lg8 lg3 lg3 lg2 1

·

=

2lg3

·

5lg2

=

+

=
2

·

+

3lg2

·

lg3

= + = .
3 6

2lg2 3lg2 1 5

+

9 lg3

. ·
lg2 lg3

变式训练 2 化简:(1)log23· log36· log68; (2)(log23+log43)(log32+log274).
2 2 解:(1)原式=log23· · =log28=3. lo g 3 lo g 6

lo g 6 1
2

lo g 8
2

(2)原式= log2 3 + 2 log2 3 × log3 2 + 3 log 3 2 =
5 3 2

2

log2 3 ×
1
2

5 3

log3 2 = 2log23×log32
5

5

=2log23×lo g

= 2. 3

【例3】 已知log189=a,18b=5,求log3645.(用a,b表示) 分析:先利用指数式和对数式的互化公式,将18b=5化成log185=b, 再利用换底公式,将log3645化成以18为底的对数,最后进行对数的 运算.

解:∵18b=5,∴b=log185.

∴log3645= lo g
=
+ 1+lo g 18 2

lo g 18 45
18 36

=
18 9

lo g 18 (5×9)

=

+

lo g18 (2×18) +

= =

lo g 18 5+log 18 9 lo g 18 2+lo g18 18 + 2-

1+lo g 18

=

2-lo g 18 9

.

变式训练 3 (1)已知 log23=a,3b=7,用 a,b 表示 log1256; 49 (2)已知 log32=a,log37=b,试用 a,b 表示 log28 8 . 解:(1)∵3b=7,∴b=log37. log1256=lo g
49 lo g 3 56
3 12

=

3lo g 3 2+lo g 3 7 1+2lo g 3 2

=

(2)∵log32=a,log37=b,

3 + 2 1+

=

3+ +2

.

∴log28 8 = lo g
=
2lo g 3 7-3lo g 3 2 2lo g 3 2+lo g 3 7

lo g 3

49 8

3 28

=

lo g 3 49-lo g 3 8 lo g 3 4+lo g 3 7

=

2 -3 2 +

.

探究三 对数的综合应用
【例 4】 (1)设 3 =4 = 36,求 + 的值;
x y

2

1

(2)若 2 =3 =6 ≠1,求证: + = .
6a 3b 2c

1

2



3



分析:用对数式表示出 x,y,a,b,c 再代入所求 (证 )式子进行求解或 证明 . (1)解:∵3x=4y=36,∴x=log336,y=log436, 2 2 2 ∴ = = lo g 36 36 =2log363=log369,
lo g 3 36 1 lo g 4 36 1 1

=
2

=

1

lo g 36 3

lo g 36 36 lo g 36 4

=log364.

∴ + =log369+log364=log3636=1.

(2)证明:设 26a=33b=62c=k(k>0,且 k ≠1). 则 6a=log2k ≠0,3b=log3k ≠0,2c=log6k ≠0. 1 6 1 3 ∴ = =6logk2, = =3logk3,
1

=

lo g 2 2



lo g3

∴ + =6logk2+2×3logk3=logk26+logk36
=logk66=6logk6= .
3

lo g 6 1 2

=2logk6,

∴ + = .

1

2

3

变式训练 4 已知 8 =10 =25 ,求证: + = .
a b c

2

3

6





解:设 8a=10b=25c=t, 则 =logt8, =logt10, =logt25,
1 1 1

所以 + =2logt8+3logt25


2

3



=6(logt2+logt5)=6logt10= .


6

思维辨析
因忽略对数的真数为正而致错 典例解方程lg(x+1)+lg x=lg 6. 错解:∵lg(x+1)+lg x=lg[x(x+1)]=lg(x2+x), ∴lg(x2+x)=lg 6, ∴x2+x=6,解得x=2或x=-3. 错因分析:错解中,去掉对数符号后方程x2+x=6与原方程不等价,产 生了增根,其原因是在x2+x=6中,x∈R,而在原方程中,应有 + 1 >再验根即可 0, . > 0, 正解:∵lg(x+1)+lg x=lg[x(x+1)]=lg 6,∴x(x+1)=6,解得x=2或x=-3,经 检验x=-3不符合题意,∴x=2.

变式训练 方程log3(x2-10)=1+log3x的解是 解析:原方程可化为log3(x2-10)=log33x. 所以x2-10=3x,解得x=-2或x=5. 检验知,方程的解为x=5. 答案:x=5

.

当堂检测
1.lg 2+lg 50=( ) A.lg 52 B.lg 25 C.2 D.lg 48 解析:lg 2+lg 50=lg(2×50)=lg 100=2. 答案:C

2.

lo g 849 lo g 2 7

的值是(

) B.
3 2

A.2 解析:
lo g 8 49 lo g 2 7

C.1
2 lo g 2 7 3

D.

2 3

=

lo g 23 72 lo g 2 7

=

lo g 2 7

= .
3

2

答案:D

3.已知 2a=5b=M,且 + =2,则 M 的值是( A.20 B.2√5 解析:∵2a=5b=M, ∴a=log2M,b=log5M. 2 1 2 ∵ + =2,∴ +
lo g2

2

1

) D.400

C.±2√5

1 lo g5

=2,

∴2logM 2+logM 5=2,∴logM20=2. 又 M>0,∴M=2√5.
答案:B

4.已知3a=2,用a表示log34-log36= 解析:∵3a=2,∴a=log32, ∴log34-log36=log322-log3(2×3) =2log32-log32-log33=a-1. 答案:a-1

.

5.计算:(1)3log72-log79+2log7 (2)(lg 2)2+lg 2· lg 500+lg 125.

3 2√2

;

9 解:(1)原式=log78-log79+log7 8

=log78-log79+log79-log78=0.

(2)原式=lg 2(lg 2+lg 500)+3lg 5

=lg 2· lg 1 000+3lg 5=3lg 2+3lg 5
=3(lg 2+lg 5)=3lg 10=3.



更多相关文章:
【优品】高中数学人教版必修1+2.2.1对数与对数运算+课....ppt
【优品】高中数学人教版必修1+2.2.1对数与对数运算+课件(系列三) - 人教
【优品】高中数学人教版必修1+2.2.1对数与对数运算+课....ppt
【优品】高中数学人教版必修1+2.2.1对数与对数运算+课件(系列四) - 人教
【优品】高中数学人教版必修1 2.2.1对数与对数运算 课....ppt
【优品】高中数学人教版必修1 2.2.1对数与对数运算 课件(系列四)_数学_高
【优品】高中数学人教版必修12.2.1对数与对数运算课件(....ppt
【优品】高中数学人教版必修12.2.1对数与对数运算课件(系列三) - 人教版 必修1 第二章 基本初等函数(I) 2.2 对数函数 2.2.1 对数与对数运算 第二课时 ...
【优品】高中数学人教版必修12.2.1对数与对数运算课件(....ppt
【优品】高中数学人教版必修12.2.1对数与对数运算课件(系列二) - 人教版 必修1 第二章 基本初等函数(I) 2.2 对数函数 2.2.1 对数与对数运算 第二课时 ...
【优品】高中数学人教版必修1+2.2.2对数函数及其性质+....ppt
【优品】高中数学人教版必修1+2.2.2对数函数及其性质+课件(系列二)_高一数学...(2)对数运算法则是什么? [解析] (1)设 f(x)=log2|x|,f(-x)=log2...
【优品】高中数学人教版必修1221对数与对数运算课件(系....ppt
【优品】高中数学人教版必修1221对数与对数运算课件(系列五) - 人教版 必修1 第二章 基本初等函数(I) 2.2 对数函数 2.2.1 对数与对数运算 书读百遍 1....
高中数学人教版必修1 2.2.1对数与对数运算 ppt课件(共5....ppt
高中数学人教版必修1 2.2.1对数与对数运算 ppt课件(共5套 打包下载)_高一数学_数学_高中教育_教育专区。高中数学人教版必修1 2.2.1对数与对数运算 ppt课件(...
人教版2017高中(必修一)数学2.2.1对数与对数运算(3)ppt....ppt
人教版2017高中(必修一)数学2.2.1对数与对数运算(3)ppt课件 - 2.2.1 对数的运算性质 (3) 1.积、商、幂的对数运算法则P65: 如果a>0,且a≠1,M>0,N...
人教版2017高中(必修一)数学2.2.1对数与对数运算ppt课....ppt
人教版2017高中(必修一)数学2.2.1对数与对数运算ppt课件 - 新疆 源
高中数学人教版必修1课件2.2.1 对数对数运算(1)_图文.ppt
高中数学人教版必修1课件2.2.1 对数对数运算(1)_数学_高中教育_教育专区。...【优品】高中数学人教版... 2人阅读 33页 5.00 人教版必修1高中数学...
数学:2.2.1对数与对数运算课件(人教a版必修1)_图文.ppt
新课标人教版课件系列高中数学必修1 2.2.1对数与对数运算》 教学目
数学:2.2.1对数与对数运算课件(人教A版必修1)_图文.ppt
数学:2.2.1对数与对数运算课件(新人教A版必修1)_数学_高中教育_教育专区。新课标人教版课件系列高中数学》必修1 2.2.1对数与对数运算》 教学目 ...
...】高中数学人教版必修一:2.2.1对数与对数运算(二)....doc
【新导学案】高中数学人教版必修一:2.2.1对数与对数运算(二)》_数学_高中教育_教育专区。2.2.1对数与对数运算(二) 》导学案 【学习目标】: 掌握对数...
人教版高中数学必修一_2.2.1对数与对数运算(3)ppt课件_....ppt
人教版高中数学必修一_2.2.1对数与对数运算(3)ppt课件 - 2.2.1 对数的运算性质 (3) 1.积、商、幂的对数运算法则P65: 如果a>0,且a≠1,M>0,N>0有...
高中数学 2_2.1 对数与对数运算课时教案 新人教版....doc
高中数学 2_2.1 对数与对数运算课时教案 新人教版必修1_其它课程_高中教育_教育专区。高中数学 2_2.1 对数与对数运算课时教案 新人教版必修1 ...
2015-2016学年高中数学 2.2.1.2对数运算课件人教A版....ppt
2015-2016学年高中数学 2.2.1.2对数运算课件人教A版必修1_初中教育_教育专区。第二章 基本初等函数(Ⅰ) 2.2 对数函数 2.2.1 对数与对数运算 第二...
人教版高中数学必修一:2.2.1对数与对数运算(二)ppt课件....ppt
人教版高中数学必修一:2.2.1对数与对数运算(二)ppt课件 - 2.2.1 对数与 对数运算 复习引入 1. 对数的定义 logaN=b 复习引入 1. 对数的定义 logaN=b ...
人教版2017高中(必修一)数学 2.2.1-对数与对数运算 ppt....ppt
人教版2017高中(必修一)数学 2.2.1-对数与对数运算 ppt课件 - 新
人教版高中数学必修一2.2.1对数与对数运算ppt课件_图文.ppt
人教版高中数学必修一2.2.1对数与对数运算ppt课件_数学_高中教育_教育专区
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图