9512.net
甜梦文库
当前位置:首页 >> 数学 >>

示范教案(2.2.2 向量减法运算及其几何意义)


2.2.2 向量减法运算及其几何意义 整体设计 教学分析 向量减法运算是加法的逆运算.学生在理解相反向量的基础上结合向量的加法运算掌握 向量的减法运算.因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向 量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法 的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算.通过阐述 向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相 互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学 学科与物理学科之间的联系,提高学生的应用意识. 三维目标 1.通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握 相反向量. 2.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.能熟练 地掌握用三角形法则和平行四边形法则作出两向量的差向量. 重点难点 教学重点:向量的减法运算及其几何意义. 教学难点:对向量减法定义的理解. 课时安排 1 课时 教学过程 导入新课 思路 1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法. 由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的 减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课. 思路 2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的 逆运算——减法.引导学生去探究、发现. 推进新课 新知探究 提出问题 ①向量是否有减法? ②向量进行减法运算,必须先引进一个什么样的新概念? ③如何理解向量的减法? ④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则? 活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这 个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运 算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应 引进一个新的概念,这个概念又该如何定义? 引导学生思考,相反向量有哪些性质? 由于方向反转两次仍回到原来的方向,因此 a 和-a 互为相反向量. 于是-(-a)=a. 我们规定,零向量的相反向量仍是零向量. 任一向量与其相反向量的和是零向量,即 a+(-a)=(-a)+a=0. 所以,如果 a、b 是互为相反的向量,那么 a=-b,b=-a,a+b=0.

(1)平行四边形法则

图1 如图 1,设向量 AB =b, AC =a,则 AD =-b,由向量减法的定义,知 AE =a+(-b)=a-b. 又 b+ BC =a,所以 BC =a-b. 由此,我们得到 a-b 的作图方法.

图2 (2)三角形法则 如图 2,已知 a、b,在平面内任取一点 O,作 OA =a, OB =b,则 BA =a-b,即 a-b 可以表示为从 b 的终点指向 a 的终点的向量,这是向量减法的几何意义. 讨论结果:①向量也有减法运算. ②定义向量减法运算之前,应先引进相反向量. 与数 x 的相反数是-x 类似,我们规定,与 a 长度相等,方向相反的量,叫做 a 的相反向量,记作-a. ③向量减法的定义.我们定义 a-b=a+(-b), 即减去一个向量相当于加上这个向量的相反向量. 规定:零向量的相反向量是零向量. ④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在, 是数形结合思想的重要体现. 提出问题 ①上图中,如果从 a 的终点到 b 的终点作向量,那么所得向量是什么? ②改变上图中向量 a、b 的方向使 a∥b,怎样作出 a-b 呢? 讨论结果:① AB =b-a. ②略. 应用示例 如图 3(1),已知向量 a、b、c、d,求作向量 a-b,c-d.

图3

活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨 学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量. 作法:如图 3(2),在平面内任取一点 O,作 OA =a, OB =b, OC =c, OD =d.则 BA =a-b, DC =c-d. 变式训练 (2006 上海高考) 在 A. AB = DC ABCD 中,下列结论中错误的是( B.AD+ AB = AC

) D.AD+ BC =0

C. AB -AD=BD

分 析 :A 显 然 正 确 , 由 平 行 四 边 形 法 则 可 知 B 正 确 ,C 中 , AB - AD = BD 错 误 ,D 中, AD + BC = AD + DA =0 正确. 答案:C 例 2 如图 4, ABCD 中, AB =a, AD =b,你能用 a、b 表示向量 AC 、 DB 吗?

图4 活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础. 要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系. 解:由向量加法的平行四边形法则,我们知道 AC =a+b, 同样,由向量的减法,知 DB = AB - AD =a-b. 变式训练 1.(2005 高考模拟) 已知一点 O 到 向量 OD 等于( A.a+b+c ) B.a-b+c C.a+b-c D.a-b-c ABCD 的 3 个顶点 A、B、C 的向量分别是 a、b、c,则

图5 解析:如图 5,点 O 到平行四边形的三个顶点 A、B、C 的向量分别是 a、b、c, 结合图形有 OD = OA + AD = OA + BC = OA + OC - OB =a-b+c. 答案:B 2.若 AC =a+b, DB =a-b. ①当 a、b 满足什么条件时,a+b 与 a-b 垂直? ②当 a、b 满足什么条件时,|a+b|=|a-b|? ③当 a、b 满足什么条件时,a+b 平分 a 与 b 所夹的角 ?

④a+b 与 a-b 可能是相等向量吗?

图6 解析:如图 6,用向量构建平行四边形,其中向量 AC 、 DB 恰为平行四边形的对角线. 由平行四边形法则,得

AC =a+b, DB = AB - AD =a-b.
由此问题就可转换为: ①当边 AB、AD 满足什么条件时,对角线互相垂直?(|a|=|b|) ②当边 AB、AD 满足什么条件时,对角线相等?(a、b 互相垂直) ③当边 AB、AD 满足什么条件时,对角线平分内角?(a、b 相等) ④a+b 与 a-b 可能是相等向量吗?(不可能,因为对角线方向不同)? 点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量 问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题 的威力与魅力,教师引导学生注意领悟. 例 3 判断题: (1)若非零向量 a 与 b 的方向相同或相反,则 a+b 的方向必与 a、b 之一的方向相同. (2)△ ABC 中,必有 AB + BC + CA =0. (3)若 AB + BC + CA =0,则 A、B、C 三点是一个三角形的三顶点. (4)|a+b|≥|a-b|. 活动:根据向量的加、减法及其几何意义. 解:(1)a 与 b 方向相同,则 a+b 的方向与 a 和 b 方向都相同; 若 a 与 b 方向相反,则有可能 a 与 b 互为相反向量, 此时 a+b=0 的方向不确定,说与 a、b 之一方向相同不妥. (2)由向量加法法则 AB + BC = AC , AC 与 CA 是互为相反向量,所以有上述结论. (3)因为当 A、B、C 三点共线时也有 AB + BC + AC =0,而此时构不成三角形. (4)当 a 与 b 不共线时,|a+b|与|a-b|分别表示以 a 和 b 为邻边的平行四边形的两条对角线的长, 其大小不定. 当 a、b 为非零向量共线时,同向则有|a+b|>|a-b|,异向则有|a+b|<|a-b|; 当 a、b 中有零向量时,|a+b|=|a-b|. 综上所述,只有(2)正确. 例 4 若| AB |=8,| AC |=5,则| BC |的取值范围是( A.[3,8] 解析: BC = AC - AB . (1)当 AB 、 AC 同向时,| BC |=8-5=3; B.(3,8) ) C.[3,13] D.(3,13)

(2)当 AB 、 AC 反向时,| BC |=8+5=13; (3)当 AB 、 AC 不共线时,3<| BC |<13. 综上,可知 3≤| BC |≤13. 答案:C 点评:此题可直接应用重要性质||a|-|b||≤|a+b|≤|a|+|b|求解. 变式训练 已知 a、b、c 是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三 角形的充要条件为 a+b+c=0. 证明:已知 a≠0,b≠0,c≠0,且 a b,b c,c a,

(1)必要性:作 AB =a, BC =b,则由假设 CA =c, 另一方面 a+b= AB + BC = AC . 由于 CA 与 AC 是一对相反向量, ∴有 AC + CA =0, 故有 a+b+c=0. (2)充分性:作 AB =a, BC =b,则 AC =a+b,又由条件 a+b+c=0, ∴ AC +c=0.等式两边同加 CA ,得 CA + AC +c= CA +0. ∴c= CA ,故顺次将向量 a、b、c 的终点和始点相连接成一三角形. 知能训练 课本本节练习 解答: 1.直接在课本上据原图作(这里从略). 2. DB , CA , AC , AD , BA . 点评:解题中可以将减法变成加法运算,如 AB - AD = DA + AB = DB ,这样计算比较简便. 3.图略. 课堂小结 1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量 差的作图. 2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论. 作业 课本习题 2.2 A 组 6、7、8. 设计感想

1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法 各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作 出从同一点出发的两个向量 a、 的差,即 a-b 可以表示为从向量 b 的终点指向向量 a 的终点 b 的向量,第二种作图方法比较简捷. 2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的 方向不要搞错了,a-b 的箭头方向要指向 a,如果指向 b 则表示 b-a,在几何证明题目中,特别要 掌握用向量表示平行四边形的四条边与两条对角线的关系.


赞助商链接

更多相关文章:
2.2.2向量减法运算及其几何意义教案
2.2.2 向量减法运算及其几何意义教学目标: 1. 2. 3. 了解相反向量的概念; 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 通过阐述向量的减法...
示范教案(2.2.2 向量减法运算及其几何意义)
示范教案(2.2.2 向量减法运算及其几何意义)_数学_高中教育_教育专区。向量减法运算及其几何意义2.2.2 向量减法运算及其几何意义 整体设计 教学分析 向量减法运算是...
...四教学设计:2.2.2向量减法运算及其几何意义》教...
高中数学必修四教学设计:2.2.2向量减法运算及其几何意义教案(新人教A版必修4)_数学_高中教育_教育专区。高中数学必修四教学设计 ...
2.2.2_向量减法运算及其几何意义_说课稿
2.2.2《向量的减法运算及几何意义》说课稿 一、教材分析 《向量的减法运算及...三、教学目标 知识目标:1.掌握相反向量的概念及其在向量减法中的作用 2.掌握...
高中数学 2.2.2 向量减法运算及其几何意义教案 新人教A...
高中数学 2.2.2 向量减法运算及其几何意义教案 新人教A版必修4_高三数学_数学_高中教育_教育专区。2.2.2 向量减法运算及其几何意义 整体设计 教学分析 向量减法...
2.2.2向量减法运算及其几何意义导学案
2.2.2向量减法运算及其几何意义导学案_数学_高中教育_教育专区。2.2.2向量减法运算及其几何意义 导学案级 人教版数学必修 4 编号:2.2.2 编制时间: 编制人:...
高中数学《2.2.2向量减法运算及其几何意义教案 新人...
§2.2.1 教学目标: 向量的加法运算及其几何意义 1、 掌握向量的加法运算,并理解其几何意义; 2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和...
...平面向量 2.2.2 向量减法运算及其几何意义教案 新人...
高中数学 第二章 平面向量 2.2.2 向量减法运算及其几何意义教案 新人教A版必修4_高三数学_数学_高中教育_教育专区。2.2.2 1.知识与技能 (1)了解相反向量的...
高中数学 2.2.2向量减法运算及其几何意义教案 新人教...
高中数学 2.2.2向量减法运算及其几何意义教案 新人教A版必修4_高三数学_数学_高中教育_教育专区。2.2.2 向量减法运算及其几何意义 教学目标: 1. 了解相反...
新人教A版必修四2.2向量减法运算及其几何意义》wor...
新人教A版必修四2.2《向量减法运算及其几何意义》word教案 - §2.2.2 向量减法运算及其几何意义 主编:彭小武 审核:罗伍生 班级 姓名 【学习目标】1. ...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图