9512.net
甜梦文库
当前位置:首页 >> 高考 >>

2016年高中数学 第二章 统计 2.2.1用样本的频率分布估计总体分布学案 新人教A版必修3


2 .2 2.2.1

用样本估计总体

用样本的频率分布估计总体分布

1.问题导航 (1)画频率分布直方图有哪些步骤?频率分布直方图的特征是什么? (2)什么是频率分布折线图? (3)什么是总体密度曲线? (4)画茎叶图的步骤有哪些?茎叶图有什么特征? 2.例题导读 对“P68 探究”内容的导读:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得 到的图的形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的 判断. 对“P68 思考”内容的导读:由于约有 88%的居民月均用水量都在 3 吨以下,因此,只要将 月用水量标准制定为 3 吨时,就可以满足 85%以上的居民每月的用水量不超过标准. 对“P69 思考”内容的导读:不同的样本得到的频率分布折线图不同;即使对于同一样本, 不同的分组情况得到的频率分布折线图也不同,因此不能由样本的频率分布折线图得到准确 的总体密度曲线.

1.频率分布表与频率分布直方图 (1)频数与频率 将一批数据按要求分成若干个组,数据分布在各个小组的个数,叫做该组的频数,每组 频数除以全体数据总数的商,叫做该组的频率,频率反映数据在每组中所占比例的大小. (2)样本的频率分布与频率分布表 ①相关概念 根据随机所抽样本的大小,分别计算数据分布在各个小组的频率,这些频率的分布规律 (取值情况),就叫做样本的频率分布.为了能直观地显示样本的频率分布情况,通常我们会 将样本的分组情况、数据分布在各个小组的频数以及计算所得的相应频率列在一张表中,叫 做样本频率分布表. ②求一组数据的频率分布表的步骤: a.求极差. b.决定组距与组数. c.将数据分组. d.列频率分布表. (3)用样本的频率分布估计总体的分布 从一个总体得到一个包含大量数据的样本时,很难从一个个的数字中直接看出样本所包

-1-

含的信息.如果把这些数据形成频率分布表或频率分布直方图,就可以比较清楚地看出样本 数据的特征,从而估计总体的分布情况. (4)频率分布直方图 ①在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的 面积表示,各小长方形的面积的总和等于 1. ②频率分布直方图的绘制方法与步骤: 频率 a.先制作频率分布表,然后作直角坐标系,横轴表示总体,纵轴表示 . 组距 b.把横轴分成若干段,每一段对应一个组.以每个组距为底,以各频率除以组距的商为 高,分别画成矩形.这样得到的直方图就是频率分布直方图. 2.频率分布折线图与总体密度曲线 (1)频率分布折线图 连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线 一般地,当总体中的个体数较多时,抽样时样本容量就不能太小.可以想象,随着样本 容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图会越来越接近于一 条光滑曲线,统计中称这条光滑曲线为总体密度曲线,如图所示.

3.茎叶图 茎叶图也是用来表示数据的一种图,其画法如下: (1)将一个或两个样本的数据分为“茎”(高位)和“叶”(低位)两部分. (2)将最小茎和最大茎之间的数按大小次序排成一列. (3)将各个数据的“叶”按大小次序写在其茎一侧或两侧.

1.判断下列各题.(对的打“√”,错的打“×”) (1)频率分布折线图与总体密度曲线无关;( ) (2)频率分布折线图就是总体密度曲线;( ) (3)样本容量很大的频率分布折线图就是总体密度曲线;( ) (4)如果样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限接近于 总体密度曲线;( ) (5)频率分布直方图不能保留原始数据,而茎叶图可以保留原始数据,而且可以随时记 录.( ) 解析:总体密度曲线通常都是用样本频率分布估计出来的.如果样本容量无限增大,分 组的组距无限减小,那么频率分布折线图就会无限接近于一条光滑曲线,这条光滑曲线就是 总体密度曲线. 答案:(1)× (2)× (3)× (4)√ (5)√ 2.一个容量为 32 的样本,分成 5 组,已知第三组的频率为 0.375,则另外四组的频数之 和为________.

-2-

解析:由题意,得第三组的频数为 32×0.375=12. ∴另外四组的频数之和为 32-12=20. 答案:20 3.在频率分布直方图中,各小长方形的面积表示什么?它们的总和是多少? 解:各小长方形的面积表示样本中落在该组内的数据的频率;总和等于 1.

1.茎叶图的优缺点 优点:用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有 数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录 与表示. 缺点:茎叶图在样本数据较多时,显得不太方便,而且茎叶图只方便记录两组的数据, 两组以上的数据虽然能够记录,但是没有表示两组记录那么直观、清晰. 2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶 图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录(这对于教练 员发现运动员现场状态特别有用 );而频率分布表和频率分布直方图则损失了样本的一些信 息,必须在完成抽样后才能制作. 3.频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据 的两种不同的表达方式,茎叶图和频率分布表极为类似,事实上,茎相当于频率分布表中的 分组;茎上叶的数目相当于频率分布表中指定区间组的频数.

作频率分布表、绘制频率分布直方图 [学生用书 P37] 调查某校高三年级男生的身高, 随机抽取 40 名高三男生, 实测身高数据(单位: cm) 如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 168 160 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 (1)作出频率分布表; (2)画出频率分布直方图. [解] (1)最低身高 151 cm,最高身高 180 cm,它们的差是 180-151=29,即极差为 29; 确定组距为 4,组数为 8,列表如下: 分组 频数 频率

-3-

[149.5,153.5) [153.5,157.5) [157.5,161.5) [161.5,165.5) [165.5,169.5) [169.5,173.5) [173.5,177.5) [177.5,181.5] 合计 (2)频率分布直方图如图所示.

1 3 6 9 14 3 3 1 40

0.025 0.075 0.15 0.225 0.35 0.075 0.075 0.025 1

[互动探究] 本例中,画出相应的频率分布折线图. 解:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图如下:

方法归纳 (1)在列频率分布表时,极差、组距、组数有如下关系: 极差 极差 ①若 为整数,则 =组数; 组距 组距 极差 极差 ②若 不为整数,则 的整数部分+1=组数. 组距 组距 (2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规 律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量 不超过 100,按照数据的多少常分为 5~12 组,一般样本容量越大,所分组数越多.

1.美国历届总统中,就任时年纪最小的是罗斯福,他于 1901 年就任,当时年仅 42 岁; 就任时年纪最大的是里根,他于 1981 年就任,当时 69 岁.下面按时间顺序(从 1789 年的华 盛顿到 2009 年的奥巴马,共 44 任)给出了历届美国总统就任时的年龄: 57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,
-4-

49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52, 69,64,46,54,48 (1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图; (2)用自己的语言描述一下历届美国总统就任时年龄的分布情况. 解:(1)以 4 为组距,列表如下: 分组 [41.5,45.5) [45.5,49.5) [49.5,53.5) [53.5,57.5) [57.5,61.5) [61.5,65.5) [65.5,69.5] 合计 画频率分布直方图及频率分布折线图如下: 频数累计 正 正 正正正 正 频数 2 7 8 16 5 4 2 44 频率 0.045 0.159 0.181 0.363 0.113 0.090 0.045 1.00 5 1 8 6 6 9 5

(2)从频率分布表中可以看出,将近 60%的美国总统就任时的年龄在 50 岁至 60 岁之间, 45 岁以下以及 65 岁以上就任的总统所占的比例相对较小.

茎叶图及其应用 某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔 30 分钟抽取一包产 品,称其质量,分别记下抽查记录如下(单位:千克): 甲:52 51 49 48 53 48 49 乙:60 65 40 35 25 65 60 画出茎叶图,并说明哪个车间的产品质量比较稳定. [解] 茎叶图如图所示(茎为十位上的数字):

由图可以看出甲车间的产品质量较集中,而乙车间的产品质量较分散,所以甲车间的产 品质量比较稳定. 方法归纳 画茎叶图时,用中间的数表示数据的十位和百位数,两边的数分别表示两组数据的个位 数.要先确定中间的数取数据的哪几位,填写数据时边读边填.比较数据时从数据分布的对 称性、中位数、稳定性等几方面来比较. 绘制茎叶图的关键是分清茎和叶,一般地说数据是两位数时,十位数字为“茎”,个位
-5-

数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时 要根据数据的特点合理选择茎和叶.

2.从两个班中各随机抽取 10 名学生,他们的数学成绩如下: 甲班:76,74,82,96,66,76,78,72,52,68 乙班:86,84,62,76,78,92,82,74,88,85 画出茎叶图并分析两个班学生的数学学习情况. 解:茎叶图如下:

由茎叶图可知,乙班的数学成绩较好,而且较稳定.

频率分布直方图的综合应用 为了检测某种产品的质量,抽取了一个容量为 100 的样本,数据的分组情况与频数 如下: [10.75,10.85),3;[10.85,10.95),9;[10.95,11.05),13;[11.05,11.15),16; [11.15,11.25),26;[11.25,11.35),20;[11.35,11.45),7;[11.45,11.55),4;[11.55, 11.65],2 (1)列出频率分布表; (2)画出频率分布直方图以及频率分布折线图; (3)据上述图表,估计数据落在[10.95,11.35)范围内的可能性是百分之几; (4)数据小于 11.20 的可能性是百分之几. [解] (1)频率分布表如下: 分组 [10.75,10.85) [10.85,10.95) [10.95,11.05) [11.05,11.15) [11.15,11.25) [11.25,11.35) [11.35,11.45) [11.45,11.55) [11.55,11.65] 合计 频数 3 9 13 16 26 20 7 4 2 100 频率 0.03 0.09 0.13 0.16 0.26 0.20 0.07 0.04 0.02 1.00

(2)频率分布直方图及频率分布折线图,如图
-6-

(3)由上述图表可知数据落在[10.95,11.35)范围内的频率为 1-(0.03+0.09)-(0.07 +0.04+0.02)=0.75=75%,即数据落在[10.95,11.35)范围内的可能性是 75%. (4)数据小于 11.20 的可能性即数据小于 11.20 的频率,设为 x,则(x-0.41)÷(11.20 -11.15)=(0.67-0.41)÷(11.25-11.15), 所以 x-0.41=0.13,即 x=0.54, 从而估计数据小于 11.20 的可能性是 54%. 方法归纳 (1)用样本的频率分布估计总体的分布,是列频率分布表和画频率分布直方图的主要目 的,频率分布表比较准确地反映样本的频率分布,而频率分布直方图则能直观地反映样本的 频率分布. (2)频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在 某一范围内的频率,可近似地估计总体在这一范围内的可能性.

3.(1)随机抽取 100 名学生,测得他们的身高(单位:cm),按照区间[160,165),[165, 170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图如图.

①求频率分布直方图中 x 的值及身高在 170 cm 以上的学生人数; ②将身高在[170,175),[175,180),[180,185]区间内的学生依次记为 A,B,C 三个 组,用分层抽样的方法从三个组中抽取 6 人,求从这三个组分别抽取的学生人数. 解:①由频率分布直方图可知 5x=1-5×(0.07+0.04+0.02+0.01), 1 所以 x= ×(1-5×0.14)=0.06. 5 即身高在 170 cm 以上的学生人数为 100×(0.06×5+0.04×5+0.02×5)=60 人. ②A,B,C 三组的人数分别为 30 人,20 人,10 人. 6 6 6 因此应该从 A,B,C 三组中每组各抽取 30× =3 人,20× =2 人,10× =1 人. 60 60 60 (2)从高一学生中抽取 50 名参加调研考试,成绩的分组及各组的频数如下(单位:分):

-7-

[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8. ①列出样本的频率分布表; ②画出频率分布直方图; ③估计成绩在[70,80)分的学生所占总体的百分比; ④估计成绩在[70,100]分的学生所占总体的百分比. 解:①频率分布表如下: 成绩分组 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 合计 频数 2 3 10 15 12 8 50 频率 0.04 0.06 0.2 0.3 0.24 0.16 1.00

频率 ②由题意知组距为 10,取小矩形的高为 ,计算得到如下的数据表: 组距 成绩分组 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 合计 根据表格画出频率分布直方图如图: 频率 0.04 0.06 0.2 0.3 0.24 0.16 1.00 小矩形高 0.004 0.006 0.02 0.03 0.024 0.016

③由频率分布表可知成绩在[70,80)分的学生所占总体的百分比约是 0.3=30%. ④估计成绩在[70,100]分的学生所占总体的百分比是 0.3+0.24+0.16=0.7=70%.

数学思想

统计问题中的数形结合思想

某良种培育基地正在培育一种小麦新品种 A.将其与原有的一个优良品种 B 进行对 照试验.两种小麦各种植了 25 亩,所得亩产数据(单位:千克)如下: 品种 A:357,359,367,368,375,388,392,399,400,405,412,414,415,421, 423,423,427,430,430,434,443,445,445,451,454
-8-

品种 B:363,371,374,383,385,386,391,392,394,394,395,397,397,400, 401,401,403,406,407,410,412,415,416,422,430 (1)完成数据的茎叶图; (2)用茎叶图处理现有的数据,有什么优点? (3)通过观察茎叶图,对品种 A 与 B 的亩产量及其稳定性进行比较,写出统计结论. [解] (1)

(2)由于每个品种的数据都只有 25 个,样本不大,画茎叶图很方便;此时茎叶图不仅清 晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的 数据. (3)通过观察茎叶图可以看出:①品种 A 的亩产量比品种 B 高;②品种 A 的亩产量比较分 散,故品种 A 的亩产稳定性较差. [感悟提高] 数形结合思想是中学数学很重要的方法之一,是高考的重要内容之一,是根据数的结构 特征,构造出与之相应的几何图形,并利用图形的特性和规律,解决数的问题.

1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( ) A.总体密度曲线 B.茎叶图 C.频率分布折线图 D.频率分布直方图 解析:选 B.所有的统计图中,仅有茎叶统计图完好无损地保存着所有的数据信息. 2.(2015·湖南师大附中月考)某厂对一批元件的长度(单位:mm)进行抽样检测,得到如 图所示的频率分布直方图.若长度在区间[90,96)内的元件为合格品,则估计这批元件中合 格产品所占的百分比是( )

A.70% B.75% C.80% D.85% 解析:选 C.易知在区间[90,96)内的直方图的面积 S=1-(0.027 5+0.027 5+0.045 0)×2=0.8,故合格品所占的百分比是 80%. 3.(2014·高考江苏卷)为了了解一片经济林的生长情况,随机抽测了其中 60 株树木的 底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽 测的 60 株树木中,有________株树木的底部周长小于 100 cm.

-9-

解析:底部周长在[80,90)的频率为 0.015×10=0.15,底部周长在[90,100)的频率为 0.025×10= 0.25 ,样本容量为 60 ,所以树木的底部周长小于 100 cm 的株数为 (0.15 + 0.25)×60=24. 答案:24

[A.基础达标] 1.在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a,b)是其中一组,抽查出的个 体数在该组内的频率为 m,该组直方图的高为 h,则|a-b|的值等于( ) A.h·m C. B.

m h

h m
频率 , 组距

D.与 m,h 无关

解析:选 B.小长方形的高=

频率 m ∴|a-b|= = . 小长方形的高 h 2.某雷达测速区规定:凡车速大于或等于 70 km/h 的汽车视为“超速”,并将受到处罚, 如图是某路段的一个检测点对 300 辆汽车的车速进行检测所得结果的频率分布直方图,则从 图中可得出将被处罚的汽车数为( )

A.30 辆 B.40 辆 C.60 辆 D.80 辆 解析:选 C.车速大于或等于 70 km/h 的汽车数为 0.02×10×300=60(辆).故选 C. 3.某超市连锁店统计了城市甲、乙的各 16 台自动售货机在 12:00 至 13:00 间的销售金 额,并用茎叶图表示如图.则可估计有( )

- 10 -

A.甲城市销售额多,乙城市销售额不够稳定 B.甲城市销售额多,乙城市销售额稳定 C.乙城市销售额多,甲城市销售额稳定 D.乙城市销售额多,甲城市销售额不够稳定 解析:选 D.十位数字是 3、4、5 时乙城市的销售额明显多于甲,估计乙城市销售额多, 甲的数字过于分散,不够稳定.故选 D. 4.(2013·高考辽宁卷)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数 据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于 60 分的人数是 15, 则该班的学生人数是( )

A.45 B.50 C.55 D.60 解析:选 B.根据频率分布直方图的特点可知,低于 60 分的频率是(0.005+0.01)×20= 0.3,所以该班的学生人数是 15 =50. 0.3

5.(2015·宿迁质检)某校 100 名学生的数学测试成绩频率分布直方图如图所示,分数不 低于 a 即为优秀,如果优秀的人数为 20,则 a 的估计值是( )

A.130 B.140 C.133 D.137 解析:选 C.由已知可以判断 a∈(130,140),所以[(140-a)×0.015+0.01×10]×100 =20. 解得 a≈133. 6.(2015·辽宁名校联考)为了解一片经济林的生长情况,随机测量了其中 100 株树木的 底部周长(单位:cm),根据所得数据画出样本的频率分布直方图(如图),那么这 100 株树木 中,底部周长小于 110 cm 的树有________株.

解析:(0.01×10+0.02×10+0.04×10)×100=70. 答案:70

- 11 -

7.(2015·丹东质检)茎叶图表示的是甲、乙两人在 5 次综合测评中的成绩,其中一个数 字被污损,若乙的总成绩是 445,则污损的数字是________. 解析: 设污损的叶对应的成绩是 x, 由茎叶图可得 445=83+83+87+x+99, 解得 x=93, 故污损的数字是 3. 答案:3 8.(2015·江西宜春质检)为了帮助班上的两名贫困生解决经济困难,班上的 20 名同学 捐出了自己的零花钱,他们的捐款数(单位:元)如下:19,20,25,30,24,23,25,29, 27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将这组数据制成频率分 布直方图, 以表彰他们的爱心. 制图时先计算最大值与最小值的差是________. 若取组距为 2, 则应分成________组;若第一组的起点定为 18.5,则在[26.5,28.5)内的频数为________. 11 解析:由题意知,极差为 30-19=11;由于组距为 2,则 =5.5 不是整数,所以取 6 组; 2 捐款数落在[26.5,28.5)内的有 27,27,28,28,27 共 5 个,因此频数为 5. 答案:11 6 5 9.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下: 甲:95,81,75,91,86,89,71,65,76,88,94,110,107; 乙:83,86,93,99,88,103,98,114,98,79,78,106,101. 画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较. 解:甲、乙两人数学成绩的茎叶图如图所示.

从这个茎叶图上可以看出,乙同学的得分情况是大致对称的;甲同学的得分情况也大致 对称,相对乙来说有些分散.乙同学的成绩比较稳定,总体情况比甲同学好. 10.某市高三数学抽测考试中,对 90 分以上(含 90 分)的成绩进行统计,其频率分布直 方图如图所示,若[130,140)分数段的人数为 900,求[90,100)分数段的人数.

解:由频率分布直方图可得[130,140)分数段的人数所占的百分比为 0.005×10=0.05, 900 所以参加考试的总人数为 =18 000. 0.05 因此[90,100)分数段的人数为 18 000×(0.045×10)=8 100.

- 12 -

[B.能力提升] 1.(2013·高考四川卷)某学校随机抽取 20 个班, 调查各班中 有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为 5 将数据分组成[0,5),[5,10),?,[30,35),[35,40]时, 所作的频率分布直方图是( )

解析:选 A.法一:由题意知样本容量为 20,组距为 5. 列表如下: 分组 [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40] 合计 频数 1 1 4 2 4 3 3 2 20 频率 1 20 1 20 1 5 1 10 1 5 3 20 3 20 1 10 1 频率 组距 0.01 0.01 0.04 0.02 0.04 0.03 0.03 0.02

观察各选择项的频率分布直方图知选 A. 频率 法二:由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、 也分别相等.比 组距 较四个选项知 A 正确,故选 A. 2.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单元:克)数 据绘制的频率分布直方图, 其中产品净重的范围是[96, 106], 样本数据分组为[96, 98), [98, 100),[100,102),[102,104),[104,106],已知样本中产品净重小于 100 克的个数是 36, 则样本中净重大于或等于 98 克并且小于 104 克的产品的个数是( )
- 13 -

A.90 B.75 C.60 D.45 解析:选 A.产品净重小于 100 克的频率为(0.050+0.100)×2=0.300,已知样本中产品 36 净重小于 100 克的个数是 36,设样本容量为 n,则 =0.300,所以 n=120,净重大于或等于

n

98 克并且小于 104 克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大 于或等于 98 克并且小于 104 克的产品的个数是 120×0.75=90.故选 A. 3.有一个容量为 200 的样本,其频率分布直方图如图所示,根据样本的频率分布直方图 估计,样本数据落在区间[10,12]内的频数为________.

解析: 设样本数据落在区间[10, 12]内的频率为 2x, 则(0.02+0.05+x+0.15+0.19)×2 =1,得 x=0.09,所以样本数据落在区间[10,12]内的频数为 0.09×2×200=36. 答案:36 4.将容量为 n 的样本中的数据分成 6 组,绘制频率分布直方图.若第一组至第六组数据 的频率之比为 2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于 27,则 n 等于________. 解析:设第一组至第六组数据的频率分别为 2x,3x,4x,6x,4x,x,则 2x+3x+4x+ 1 2 3 4 6x+4x+x=1,解得 x= ,所以前三组数据的频率分别是 , , ,故前三组数据的频数 20 20 20 20 2n 3n 4n 之和等于 + + =27,解得 n=60. 20 20 20 答案:60 5. 近年来, 我国“雾霾天气”频发, 严重影响人们的身体健康. 根据空气质量指数 API(为 整数)的不同,可将空气质量分级如下表: API 级别 状况 0~50 Ⅰ 优 51~100 Ⅱ 良 101~150 Ⅲ1 轻微污染 151~200 Ⅲ2 轻度污染 201~250 Ⅳ1 中度污染 251~300 Ⅳ2 中度重污 染 >300 Ⅴ 重度 污染

- 14 -

对某城市一年(365 天)的空气质量进行监测, 获得的 API 数据按照区间[0, 50], (50, 100], (100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.

(1)求频率分布直方图中 x 的值; (2)计算一年中空气质量分别为良和轻微污染的天数. 解:(1)根据频率分布直方图可知, ? ? 3 + 2 + 7 + 3 + 8 ?×50?÷50= 119 . x=?1-? ? ? 18 250 ? ?1 825 365 1 825 1 825 9 125? ? (2)空气质量为 Y 的天数=(Y 对应的频率÷组距)×组距×365 天,所以一年中空气质量 119 2 为良和轻微污染的天数分别是 ×50×365=119(天)和 ×50×365=100(天). 18 250 365 6.(选做题)对某电子元件进行寿命追踪调查,情况如下: 寿命(h) 个数 [100,200) 20 [200,300) 30 [300,400) 80 [400,500) 40 [500,600] 30

(1)列出频率分布表; (2)画出频率分布直方图; (3)估计电子元件寿命在 400 h 以上的频率. 解:(1)列出频率分布表如下: 寿命(h) [100,200) [200,300) [300,400) [400,500) [500,600] 合计 (2)画出频率分布直方图如图: 频数 20 30 80 40 30 200 频率 0.10 0.15 0.40 0.20 0.15 1

(3)估计电子元件寿命在 400 h 以上的频率为 0.35.

- 15 -



更多相关文章:
...第二章统计2.2.1用样本的频率分布估计总体分布(2)学....doc
高中数学第二章统计2.2.1用样本的频率分布估计总体分布(2)学案新人教A版必修3_高三数学_数学_高中教育_教育专区。高中数学第二章统计2.2.1用样本的频率分布...
...2.2.1用样本的频率分布估计总体分布学案新人教A版必....doc
2017_2018版高中数学第二章统计2.2.1用样本的频率分布估计总体分布学案新人教A版必修3_数学_高中教育_教育专区。2.2.1 用样本的频率分布估计总体分布 1.理解...
...2.2.1用样本的频率分布估计总体分布学案新人教A版必....doc
2017-2018版高中数学第二章统计2.2.1用样本的频率分布估计总体分布学案新人教A版必修3_高三数学_数学_高中教育_教育专区。2.2.1 用样本的频率分布估计总体分布...
...第二章统计2.2.1用样本的频率分布估计总体分布教学....doc
高中数学第二章统计2.2.1用样本的频率分布估计总体分布教学案新人教A版必修3
...2.2.1用样本的频率分布估计总体分布学案新人教A版必....doc
2018版高中数学第二章统计2.2.1用样本的频率分布估计总体分布学案新人教A版必修3_数学_高中教育_教育专区。2.2.1 用样本的频率分布估计总体分布 [学习目标] 1...
...第二章统计2.2.1用样本的频率分布估计总体分布1导学....doc
高中数学第二章统计2.2.1用样本的频率分布估计总体分布1导学案新人教A版必修(1)_高三数学_数学_高中教育_教育专区。高中数学第二章统计2.2.1用样本的频率分布...
...第二章统计2.2.1用样本的频率分布估计总体分布1导学....doc
高中数学第二章统计2.2.1用样本的频率分布估计总体分布1导学案新人教A版必修 - 2.2.1 用样本的频率分布估计总体分布第 1 课时 【学法指导】 1.认真阅读...
...第二章统计2.2.1用样本的频率分布估计总体分布(1)学....doc
河北省承德市高中数学第二章统计2.2.1用样本的频率分布估计总体分布(1)学案新人教A版必修3 - 2.2.1 用样本的频率分布估计总体分布 1 学习目标 1.了解什么...
...第二章统计2.2.1用样本的频率分布估计总体分布课件....ppt
2018版高中数学第二章统计2.2.1用样本的频率分布估计总体分布课件新人教A版必修3_教学案例/设计_教学研究_教育专区。第二章 2.2 用样本估计总体 2.2.1 用...
高中数学 2.2.1用样本的频率分布估计总体分布学案 新人....doc
高中数学 2.2.1用样本的频率分布估计总体分布学案 新人教A版必修3_高一数学_数学_高中教育_教育专区。高中数学 2.2.1用样本的频率分布估计总体分布学案 新人教...
...数学第二章统计2.2.1用样本的频率分布估计总体的分....doc
2017_2018版高中数学第二章统计2.2.1用样本的频率分布估计总体分布学案新人教B版必修3_数学_高中教育_教育专区。2.2.1 用样本的频率分布估计总体的分布 [...
...章统计第2节第1课时用样本的频率分布估计总体分布教....doc
2017_2018学年高中数学第二章统计2节第1课时用样本的频率分布估计总体分布学案新人教A版必修3 - 第 1 课时 用样本的频率分布估计总体分布 [核心必知] 1....
...2.2.1用样本的频率分布估计总体分布课件新人教A版必....ppt
2017_2018学年高中数学第二章统计2.2用样本估计总体2.2.1用样本的频率分布估计总体分布课件新人教A版必修3 - 2017_2018学年高中数学课件新人教A版必修3 新...
...第二章统计2_2_1用样本的频率分布估计总体分布课时....doc
高中数学第二章统计2_2_1用样本的频率分布估计总体分布课时提升作业2新人教A版必修3 - 用样本的频率分布估计总体分布 一、选择题(每小题 3 分,共 12 分) ...
高中数学2.2.1用样本的频率分布估计总体频率分布学案新....doc
高中数学2.2.1用样本的频率分布估计总体频率分布学案新人教A版必修3_高三数学_数学_高中教育_教育专区。高中数学2.2.1用样本的频率分布估计总体频率分布学案新...
...第二章 统计 2.2.1 用样本的频率分布估计总体分布教....doc
新疆和硕县高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体分布教学案新人教A版3 精_数学_高中教育_教育专区。《2.2.1 一、教学内容分析 用样本的...
...第二章统计2.2.1用样本的频率分布估计总体分布(二....doc
18版高中数学第二章统计2.2.1用样本的频率分布估计总体分布(二)学案新人教B版必修3_数学_高中教育_教育专区。2.2.1 学习目标 用样本的频率分布估计总体的...
...数学第二章统计2.2.1用样本的频率分布估计总体的分....doc
18版高中数学第二章统计2.2.1用样本的频率分布估计总体分布学案新人教B版必修3_数学_高中教育_教育专区。2.2.1 用样本的频率分布估计总体的分布 1.理解用...
...第二章统计2.2.1用样本的频率分布估计总体分布(2)学....doc
河北省承德市高中数学第二章统计2.2.1用样本的频率分布估计总体分布(2)学案新人教A版必修3 - 2.2.1 用样本的频率分布估计总体分布 2 学习目标 1.进一步理解...
...数学第二章统计221用样本的频率分布估计总体分布教....doc
福建省莆田市高中数学第二章统计221用样本的频率分布估计总体分布教案新人教A版必修3(数学教案) - 2.2.1 用样本的频率分布估计总体分布 一、三维目标: 1、知识...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图