9512.net
甜梦文库
当前位置:首页 >> 数学 >>

4.1.1 新圆的标准方程公开课课件(人教A版必修2)


4.1.1 圆的标准方程
y
O

A

x

r

生活中的圆

自学探究:
问题一:什么是圆?初中时我们是怎样给圆 下定义的? 平面内与定点距离等于定长的点的集合 (轨迹)是圆。 问题二:平面直角坐标系中,如何确定一个 圆? 圆心:确定圆的位置 半径:确定圆的大小

合作解疑: 圆心是C(a,b),半径是r的圆的方程是什么? 1.设点M (x,y)为圆C上任一点,则M满足条件?
|MC|= r

y M(x,y) O

2.设M(x,y),则以上条件 如何表示?

( x ? a ) ? ( y ? b) ? r
2 2

C

x

(x-a)2+(y-b)2=r2

想一想?

3.是否在圆上的点都适合这个方程?是否适合这 个方程的坐标的点都在圆上?

( x ? a ) ? ( y ? b) ? r
2 2

2

点M(x, y)在圆上,由前面讨论可知,点M的坐 标适合方程;反之,若点M(x, y)的坐标适合方程, 这就说明点 M与圆心的距离是 r ,即点M在圆心为A (a, b),半径为r的圆上.

知识点一:圆的标准方程 y

标准方程

M(x,y)

( x ? a ) ? ( y ? b) ? r
2 2

2

O

C

x

圆心C(a,b),半径r 特别地,若圆心为O(0,0),则圆的方程为:
x2 ? y2 ? r 2

应用举例 1.说出下列圆的方程: (1) 圆心在原点,半径为3. (2) 圆心在点C(3, -4), 半径为7. (3)经过点P(5,1),圆心在点C(8,-3). 2. 说出下列方程所表示的圆的圆心坐标和半径:

(1) (x + 7)2 + ( y ? 4)2 = 36 (2) x2 + y2 ? 4x + 10y + 28 = 0 (3) (x ? a)2 + y 2 = m2

精讲点拨:
例1 写出圆心为 A(2,?3) ,半径长等于5的圆的方 程,并判断点 M 1 (5,?7) , M 2 (? 5 ,?1)是否在这个圆上。

解:圆心是 A(2,?3) ,半径长等于5的圆的标准方 程是:

( x ? 2) ? ( y ? 3) ? 25
2 2

( x ? 2) 2 ? ( y ? 3) 2 ? 25 把 M 1 (5,?7) 的坐标代入方程 左右两边相等,点M 1 的坐标适合圆的方程,所以点

M 1在这个圆上;
把点 M 2 (? 5 ,?1) 的坐标代入此方程,左右两边 不相等,点M 2 的坐标不适合圆的方程,所以点 M 2不 在这个圆上.

知识探究二:点与圆的位置关系 探究:在平面几何中,如何确定点与圆的位置关 系? M M M

O
|OM|<r 点在圆内

O

O

|OM|=r
点在圆上

|OM|>r
点在圆外

知识点二:点与圆的位置关系

点与圆的位置关系:
(x0-a)2+(y0-b)2<r2时,点M在圆C内. (x0-a)2+(y0-b)2=r2时,点M在圆C上;

(x0-a)2+(y0-b)2>r2时,点M在圆C外;

例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程。
解:设所求圆的方程为:

( x ? a ) ? ( y ? b) ? r
2 2

2

待定系数 法

因为A(5,1),B (7,-3),C(2,8)都在圆上

?(5 ? a ) ? (1 ? b) ? r ? 2 2 2 ?(7 ? a ) ? (?3 ? b) ? r ?(2 ? a ) 2 ? (?8 ? b) 2 ? r 2 ?
2 2 2

?a ? 2, ? ?b ? ?3, ?r ? 5. ?

所求圆的方程为

( x ? 2) 2 ? ( y ? 3) 2 ? 25

例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且 圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方 程. 解:∵A(1,1),B(2,-2)
3 1 ?2 ? 1 ? 线段AB的中点D( , ? ), k AB ? ? ?3. 2 2 2 ?1 1 1 3 ? 线段AB的垂直平分线CD的方程为:y+ ? ( x ? ). 2 3 2

即:x-3y-3=0
?x ? y ?1 ? 0 ? x ? ?3 联立直线l , CD的方程: , 解得: ? ? x ? 3y ? 3 ? 0 ? ? y ? ?2

∴圆心C(-3,-2)

? r ? AC ? (1 ? 3) 2 ? (1 ? 2) 2 ? 5.

?圆心为C的圆的标准方程为(x+3)2 ? ( y ? 2)2 ? 25.

例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且 圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方 程. 2 2 2 解2:设圆C的方程为 ( x ? a) ? ( y ? b) ? r , ∵圆心在直线l:x-y+1=0上 圆经过A(1,1),B(2,-2)
待定系数法

?a ? b ? 1 ? 0 ? a ? ?3 ? ? 2 2 2 ? ?(1 ? a) ? (1 ? b) ? r ? ?b ? ? 2 ?(2 ? a)2 ? (?2 ? b) 2 ? r 2 ?r ? 5 ? ?
?圆心为C的圆的标准方程为(x+3)2 ? ( y ? 2)2 ? 25.

练习
1.点(2a, 1 ? a)在圆x2 + y2 = 4的内部,求实数 a 的 取值范围. 2.根据下列条件,求圆的方程: (1)求过两点A(0,4)和B(4,6),且圆心在直线xy+1=0上的圆的标准方程。 (2)圆心在直线5x-3y=8上,又与两坐标轴相 切,求圆的方程。 (3)求以C(1,3)为圆心,且和直线3x-4y-7=0 相切的直线的方程。

思考
例 已知圆的方程是x2 + y2 = r2,求经过圆上一 点 M ( x0 , y0 ) 的切线的方程。 解: 如图, 设切线方程为y ? y0 ? k ( x ? x0 ) y0 半径OM的斜率为kOM ? x0 ,
Y
M ( x0 , y0 )

0

X

x0 因OM垂直于圆的切线, 所以k ? ? y0 x0 切线方程为y ? y0 ? ? ( x ? x0 ) y0

整理得, x0 x ? y0 y ? x ? y
2 0

2 0

2 2 ? x0 ? y0 ? r 2 ,

?所求圆的切线方程为x0 x ? y0 y ? r 2

小结
1.圆的标准方程

( x ? a ) ? ( y ? b) ? r
2 2

2

(圆心C(a,b),半径r)

2.点与圆的位置关系 3.求圆的标准方程的方法: ①待定系数法 ②几何性质法


赞助商链接

更多相关文章:
高中数学 4.1.1圆的标准方程全册精品教案 新人教A版必修2
高中数学 4.1.1圆的标准方程全册精品教案 新人教A版必修2_高三数学_数学_高中教育_教育专区。4.1.1 (一)教学目标 1.知识与技能 圆的标准方程 (1)掌握圆的...
高中数学411圆的标准方程教学案新人教A版必修2(数学教案)
高中数学411圆的标准方程教学案新人教A版必修2(数学教案) - 2015 高中数学 4.1.1 圆的标准方程教学案 新人教 A 版必修 2 班级 【使用说明与学法指导】 1....
高中数学411圆的标准方程教案1新人教A版必修2(数学教案...
高中数学411圆的标准方程教案1新人教A版必修2(数学教案) - §4.1.1 圆的标准方程 单元名称 授课时间 圆的方程 2015 年 4 月 2 日 授课班级 授课地点 备考...
高中数学《4.1.1圆的标准方程教案新人教版必修2
高中数学《4.1.1圆的标准方程教案新人教版必修2 - 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2...
4.1.1圆的标准方程(公开课教案)
4.1.1圆的标准方程(公开课教案) - 《4.1.1 圆的标准方程》教案 授课时间:2017.6.9 授课地点:尤溪晨光中学高一(5) 授课教师:朱兴炬 一、教材分析: 圆是...
...4.1.1圆的标准方程教材梳理素材新人教A版必修2
高中数学第4章圆与方程4.1圆的方程4.1.1圆的标准方程教材梳理素材新人教A版必修2 - 4.1.1 圆的标准方程 疱丁巧解牛 知识·巧学 一、圆的定义及标准方程 当...
高中数学第四章圆与方程4.1.2圆的一般方程教案新人教A版必修2_...
高中数学第四章圆与方程4.1.2圆的一般方程教案新人教A版必修2_数学_初中教育_教育专区。4.1.2 圆的一般方程 1.在掌握圆的标准方程的基础上 ,理解记忆圆的一般...
高中数学《圆的标准方程教案新人教版必修2
高中数学《圆的标准方程教案新人教版必修2 - 第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程 ,能根据圆心、半径写出圆的...
2016新课标三维人教A版数学必修2 4.1 圆的方程
2016新课标三维人教A版数学必修2 4.1 圆的方程 - 圆的方程 4.1.1 圆的标准方程 预习课本 P118~120,思考并完成以下问题 1.确定圆的几何要素有哪些? 2.圆的...
4.1.1 圆的标准方程(课时训练及答案)
4.1.1 圆的标准方程(课时训练及答案)_数学_高中教育_教育专区。高中数学(人教A版,必修2)课时训练及答案【全册配套】 高中数学(人教 A 版,必修二)课时作业 第...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图