9512.net
甜梦文库
当前位置:首页 >> 数学 >>

福建省晋江市永春县第一中学2016-2017学年高二数学上学期期末考试试题 理

看看看看 你能你 们

福建省晋江市永春县第一中学 2016-2017 学年高二数学上学期期末考 试试题 理
考试时间:120 分钟 试卷总分:150 分 本试卷分第 I 卷和第 II 卷两部分 第 I 卷(选择题) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上 . ............... 1.设集合 M ? {x | 0 ? x ? 3} ,集合 N ? {x | x2 ? x ? 2 ? 0} ,则 M A. {x | 0 ? x ? 1} B. {x | 0 ? x ? 2} ) C. ( C. {x | 0 ? x ? 1}

N 等于(



D. {x | 0 ? x ? 2}

2. 抛物线 y ? 4 x2 的焦点坐标为( A. (1, 0) B. (0,1)

1 , 0) 16

D. (0,

1 ) 16

3. 已知命题 p :若 x ? 0 ,则 x ? 则下列命题为真命题的是( A. p ? q B. ? p ? q
2

1 1 ? 2 ;命题 q :若 ? 1 ,则 x ? 1 . x x
) C. p ? ?q D. ? p ? ? q )

4. 命题“若 x ? 1 ,则 x ? 1 ”的逆命题、否命题、逆否命题中,真命题的个数是( A.0 B.1 C.2 D.3 )

4 x2 y 2 ? ? 1 ”是“双 曲线的渐近线方程为 y ? ? x ”的( 5. “双曲线的方程为 3 9 16
A.充分而不必要条件 C.充分必要条件 B.必要而不充分条件 D.既不充分也不必要条件

6. 已知△ ABC 的内角 A, B, C 所对的边分别为 a, b, c .若 a ? 2 ,b ? 2 3 ,A ? 30 , 则B 等 于( ) B. 60 C. 30 或 150 D. 60 或 120

A. 30

ì2 x - y ? 0 ? 7.若 x, y 满足 í x + y ? 3 ,则 2 x + y 的最大值为( ?x ? 0 ?
A. 0 B. 3 C. 4



D. 5

-1-

看看看看 你能你 们

8.空间四边形 OABC 中,点 M 在 OA 上,且 OM ?

1 MA ,点 N 为 BC 的中点.若 OA ? a , 2

OB ? b , OC ? c ,则 MN 等于(
A. a ?



1 1 1 1 1 1 1 1 b? c B. ? a ? b ? c C. a ? b ? c 2 2 3 2 2 2 2 2 1 1 1 D. ? a ? b ? c 2 2 2 9. 已知 F1 , F2 分别为双曲线 x 2 ? y 2 ? 1的左,右焦点,点 P 在双曲线上.若 ?F 1PF 2 ? 60 ,
则△ PF 1F 2 的面积为( A. ) C.

1 3

3 2

B. 3

3 3 2

D. 2 3

10. 若 m, n 为两个不相等的非零实数,则方程 mx ? y ? n ? 0 与 能是( )

x2 y 2 ? ? 1 所表示的曲线可 m n

x2 y 2 ? ? 1 的左,右焦点.若 M 为椭圆上的一点,且△ MF1F2 的 11. 已知 F1 , F2 分别为椭圆 25 16
内切圆的周长等于 3? ,则满足条件的点 M 的个数为( A.0 B.1 C.2 D.4 )

12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐, 齐去长安一千一百二十五里.良马初日行一百零三里, 日增十三里;驽马初日行九十七里, 日减半里;良马先至齐,复还迎驽马,二马相逢. 问:几日相逢?( A.8 日 B.9 日 C.12 日 第Ⅱ卷 二、填空题:本大题共 4 小题,每小题 5 分, 13. 双曲线 16 x ? 9 y ? 144 的离心率为________ .
2 2



D.16 日

14.图中是抛物线形拱桥,当水面在 l 时,拱顶离水面 2 m, 水面宽 4 m.水位上升 1 m 后,水面宽________ m.
-2-

看看看看 你能你 们

AB ? 4 , AD ? 3 , AA1 ? 4 , 15 .在平行六面体 ABCD ? A 1B 1C1D 1 中,

?BAD ? 90 , ?BAA1 ? ?DAA1 ? 60 ,则 AC1 的长等于



16.设△ ABC 的内角 A 、 B 、 C 所对的边 a 、 b 、 c 成等比数列,则 _______.

b a ? 的取 值范围为 a b

三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分 12 分) 已知等差数列 {an } 的首项 a1 ? 2 ,公差 d ? 0 ,且 a1 , a3 , a9 成等比数列. (Ⅰ)求数列 {an } 的通项公式; (Ⅱ) bn ?

an ,求数列 {bn } 的的前 n 项和为 Tn . 2n

18. (本小题满分 12 分) 如图,在正方体 ABCD ? A 1B 1C1D 1 中, E , F 分别是 CC1 , B 1C1 的中点. (Ⅰ)求 A1F 与 AD1 所成角的余弦值; (Ⅱ)求证: A1F / / 平面 AD1E .

D1 A1 D A B F B1

C1 E C

-3-

看看看看 你能你 们

19. (本小题满分 12 分) 已知动圆 C 过定点 F (1, 0) 且与定直线 l : x ? ?1 相切,动圆圆心 C 的轨迹为曲线 E . (Ⅰ)求曲线 E 的方程; (Ⅱ)过点 F 作倾斜角为 60 的直线 m ,交曲线 E 于 A, B 两点,求△ AOB 的面积.

20. (本小题满分 12 分) 如 图 , 在 四 棱 锥 P ? ABCD 中 , 底 面 A B C D为 矩 形 , 侧 面 PAD ? 底 面 A B C D,

AB ? 2 , AD ? 2 , PA ? PD .
(Ⅰ)求证: PB ? AC ; (Ⅱ)设 AC 与平面 PCD 所成的角为 45 ,求二面角 A ? PB ? C 的余弦值.

P

D

C

A

B

21. (本小题满分 12 分) 已知过点 D(?2, 0) 的直线 l 与椭圆 点.
-4-

x2 ? y 2 ? 1交于不同的 A, B 两点,点 M 是 AB 的中 2

看看看看 你能你 们

(Ⅰ)若四边形 OAPB 是平行四边形,求点 P 的轨迹方程; (Ⅱ)求

| MA | 的取值范围. | MD |

22. (本小题满分 10 分) 已知函数 f ( x) ?| x ? 1| . (Ⅰ)解不等式 f ( x) ? f ( x ? 3) ? 5 ; (Ⅱ) | a |? 1 , | b |? 1 , a ? 0 ,求证: f (ab) ?| a | f ( ) .

b a

永春一中高二数学(理)期末试卷 参考答案 1 A 2 D 3 C 4 C 5 A 6 D 7 C 8 B 9 B 10 B 11 C 12 B

13.

5 3

14. 2 2

15. 69

16. [2, 5)
2

17.解: (Ⅰ)因为 a1 , a3 , a9 成等比数列,所以 a3 ? a1a9 ,即 (2 ? 2d )2 ? 2 ? (2 ? 8d ) ,

d 2 ? 2d ? 0 , d ? 0 , d ? 2 ,

an ? 2 ? (n ?1) ? 2 ? 2n ,数列 {an } 的通项公式为 an ? n .
(Ⅱ)由(Ⅰ)得 an ? 2n ,则 bn ?

n 2 n ?1



-5-

看看看看 你能你 们

Tn ? 1 ?

2 3 n ?1 n 1 1 2 3 n ?1 n ? 2 ? ? n ? 2 ? n ?1 , Tn ? ? 2 ? 3 ? ? n ?1 ? n , 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 n 所以 Tn ? 1 ? 1 ? 2 ? 3 ? ? n ?1 ? n , 2 2 2 2 2 2 1 1 ? ( )n 1 1 1 n 2 ? n ? 4? n?2. Tn ? 2(1 ? 1 ? 2 ? ? n ?1 ) ? n ?1 ? 2 ? 1 2n ?1 2 2 2 2 2 n ?1 1? 2

18 .解:不妨设正方体的棱长为 1,以 DA, DC, DD1 为单位正交基底建立空间直角坐标系

1 1 E (0,1, ) , F ( ,1,1) . 如图所示. 则 A(1, 0, 0) , Dxyz , A1 (1,0,1) , D1 (0,0,1) , 2 2 1 5 A1 F ? ( ? ,1, 0) ,AD1 ? (?1,0,1) , (Ⅰ) 解: , | A1F |? | AD1 |? 2 , 2 2 1 1 A1 F ? AD1 ? ? ? (?1) ? 1? 0 ? 0 ? 1 ? . 2 2

z
D1 A1 M D F B1 E C B C1

A1F ? AD1 所以 cos ? A1F , AD1 ?? ? | A1F | ? | AD1 |

1 2 5 ? 2 2

A

y

10 . ? 10

x

因此, A1F 与 AD1 所成角的余弦值是

10 . 10
1 2 1 2 1 ,1, 0) . 2

(Ⅱ)证明:方法一:取 AD1 的中点 M ,连接 ME ,则 M ( , 0, ) , ME ? ( ?
/ / ME , 所以 A 1F 1F ? ME ,即 A

又 A1F ? 平面 AD1E , ME ? 平面 AD1E ,因此 A1F / / 平面 AD1E . 方法二: A1 F ? ( ?

1 1 ,1, 0) , AD1 ? (?1,0,1) , AE ? (?1,1, ) , 2 2

A1 F ? ?
面 AD1E .

1 AD1 ? AE , 即A 又 A1F ? 平面 AD1E , 因此 A1F / / 平 1F 与 AD 1 , AE 共面, 2

方法三: AD1 ? (?1,0,1) , D1 E ? (0,1, ? ) , 设 n ? ( x, y, z) 是平面 AD1E 的一个法向量,则 n ? AD1 , n ? D1E ,

1 2

? ?x ? z ? 0 ? ?n ? AD1 ? 0 ? ,? ,令 z ? 2 ,得 x ? 2 , y ? 1 , n ? (2,1, 2) . ? 1 y ? z ? 0 n ? D E ? 0 ? ? ? 1 ? 2
-6-

看看看看 你能你 们

又 A1 F ? ( ?

1 ,1, 0) , 2 1 2

故 n ? A1 F ? (2,1, 2) ? 2 ? (? ) ? 1?1 ? 2 ? 0 ? 0 ,所以 n ? A 1F . 又 A1F ? 平面 AD1E ,因此 A1F / / 平面 AD1E . 19.解: (Ⅰ)依题意知,点 C 到定点 F 和直线 l 的距离相等, 所以点 C 的轨迹是以点 F 为焦点,以直线 l 为准线的抛物线, 设抛物线的方程为 y 2 ? 2 px ( p ? 0 ) ,由 故曲线 E 的方程为 y 2 ? 4 x . (Ⅱ)直线 m 的方程为 y ? 3( x ?1) , 由?

l

y
C O B F

A

p ? 1 ,得 p ? 2 , 2

x

? ? y ? 3( x ? 1) 消去 x 整理得 3 y 2 ? 4 3 y ?12 ? 0 , 2 ? ? y ? 4x
4 3 , y1 y2 ? ?4 , 3

设 A( x1 , y1 ) , B( x2 , y2 ) ,则 y1 ? y2 ?

1 1 1 16 4 S?AOB ? ? | OF | ? | y1 ? y2 | ? ?1? ( y1 ? y2 ) 2 ? 4 y1 y2 ? ? ? 16 ? 3. 2 2 2 3 3 4 3. 3 A ?P D , O ?A D , 20. (Ⅰ) 证明: 分别取 AD ,BC 的中点 O ,E , 连接 PO, OE , 由P 得P
所以,△ AOB 的面积为 因为侧面 PAD ? 底面 ABCD ,侧面 PAD 底面 ABCD ? AD , PO ? 平面 PAD ,

所以 PO ? 底面 ABCD .在矩形 ABCD 中, OE ? AD ,则 OA, OE, OP 两两互相垂直. 以 O 为原点, 分别以 OA, OE, OP 的方向为 x 轴、y 轴、z 轴的正方向,建立空间直角坐标系 Oxyz ,如图所示. 则 A(1, 0, 0) , B(1, 2,0) , C (?1, 2,0) , 设 P(0, 0, t ) ( t ? 0 ) , 所以 AC ? (?2, 2,0) , PB ? (1, 2, ?t ) , 所以 PB ? AC ? 1? (?2) ? 2 ? 2 ? (?t ) ? 0 ? 0 , 因此 PB ? AC ,得 PB ? AC . (Ⅱ) 解法一:D(?1, 0, 0) ,DC ? (0, 2,0) ,DP ? (1,0, t ) .

z
P

D O E

C

x

y

A

B

设 m ? ( x, y, z) 是平面 PCD 的一个法向量,则 m ? DC , m ? DP ,

-7-

看看看看 你能你 们

? ? x ? tz ? 0 ?m ? DC ? 0 ? ,? ,令 x ? t ,得 y ? 0 , z ? ?1 , m ? (t ,0, ?1) . ? 2 y ? 0 ? m ? DP ? 0 ? ? ?
又 AC ? (?2, 2,0) ,

cos ? AC, m ? ?

AC ? m AC ? m ?2t . ? ? 2 | AC | ? | m | | AC | ? | m | t ?1 ? 6

因为 AC 与平面 PCD 所成的角为 45 ,所以 sin 45 ?| cos ? AC, m ?| ,

|

?2t t 2 ?1 ? 6

|?

2 ,t ? 3 .P(0,0, 3) ,AB ? (0, 2,0) ,PB ? (1, 2, ? 3) , 2

设 n1 ? ( x1 , y1 , z1 ) 是平面 PAB 的一个法向量,则 n1 ? AB , n1 ? PB ,

? 2 y1 ? 0 ?n1 ? AB ? 0 ? ? , ? ? ? ? ? n1 ? PB ? 0 ? x1 ? 2 y1 ? 3z1 ? 0

, 令 x1 ? 3 , 得 y1 ? 0 , z1 ? 1 ,

n1 ? ( 3,0,1) .
BC ? (?2,0,0) , PB ? (1, 2, ? 3) ,
设 n2 ? ( x2 , y2 , z2 ) 是平面 PAB 的一个法向量,则 n2 ? BC , n2 ? PB ,

? ? ?2 x2 ? 0 ?n2 ? BC ? 0 ? ,? ? ? ? x2 ? 2 y2 ? 3z2 ? 0 ? n2 ? PB ? 0 ?

, 令 y2 ? 3 , 得 x2 ? 0 , z2 ? 2 ,

n2 ? (0, 3, 2) .
所以 cos ? n1 , n2 ??

n1 ? n2 2 10 . ? ? | n1 | ? | n2 | 2 ? 5 10
10 . 10

因此,二面角 A ? PB ? C 的余弦值为 ?

解法二:作 AF ? PD ,垂足为 F ,连接 CF ,如图所示. 设 F ( x,0, z ) ,则 AF ? ( x ?1,0, z) , DC ? (0, 2,0) ,

AF ? DC ? (0, 2,0) ? ( x ?1) ? 0 ? 0 ? 2 ? z ? 0 ? 0 ,
AF ? DC ,即 AF ? DC ,
又 PD

z
P

DC ? D ,所以 AF ? 平面 PCD ,

FC 为 AC 在平面 PCD 上的射影,

F D O A B
-8-

?ACF ? 45 , 故 ?ACF 是 AC 与平面 PCD 所成的角,
由 | AC |? 6 ,得 | AF |? 3 ,

G E

C

x

y

看看看看 你能你 们

在 Rt △ ADF 中, AD ? 2 ,则 DF ? 1 , ?ADF ? 60 , △ PAD 为等边三角形,因此 P(0,0, 3) . 作 AG ? PB ,垂足为 G ,连接 CG . 在 Rt △ PAB 中, PB ?

6 , AG ?

1 2 6 , DG ? , DG ? DP , 3 3 3

故 G( ,

2 2 2 3 5 2 3 , ) , C(?1, 2,0) , B(1, 2,0) , GC ? (? , ,? ) , 3 3 3 3 3 3

PB ? (1, 2, ? 3) ,

5 2 3 ? 2 ? (? ) ? (? 3) ? 0 , GC ? PB ? ? ?1 ? 3 3 3
? GC ? PB , GC ? PB , 故 ?A G C为 二 面 角 A ? P B C 的 平 面 角 ,

GA ? (

1 2 2 , ? ? , 3 3

3 3

, )

cos ?AGC ? cos ? GA, GC ??

GA ? GC 10 . ?? 10 | GA | ? | GC |
10 . 10

因此,二面角 A ? PB ? C 的余弦值为 ?

21. 解法一: (Ⅰ)设直线 l 的方程为 y ? k ( x ? 2) ,

? y ? k ( x ? 2) ? 2 2 2 2 由 ? x2 消去 y 整理得 (1 ? 2k ) x ? 8k x ? 8k ? 2 ? 0 , 2 ? ? y ?1 ? 2

? ? (8k 2 )2 ? 4(1 ? 2k 2 )(8k 2 ? 2) ? 0 , k 2 ?
设 A( x1 , y1 ) , B( x2 , y2 ) ,则 x1 ? x2 ? ?

1 , 2

8k 2 8k 2 ? 2 x x ? , , 1 2 1 ? 2k 2 1 ? 2k 2
4k , 1 ? 2k 2

y1 ? y2 ? k ( x1 ? 2) ? k ( x2 ? 2) ? k ( x1 ? x2 ) ? 4k ?
OP ? OA ? OB , 四边形 OAPB 是平行四边形,
设 P( x, y ) ,则 x ? x1 ? x2 , y ? y1 ? y2 ,

P A D M

y
B

? 8k x?? ? ? 1 ? 2k 2 ,消去 k 整理得 ? ? y ? 4k ? 1 ? 2k 2 ?
2

O

x
-9-

看看看看 你能你 们

x2 ? 2 y 2 ? 4x ? 0 ,由 k 2 ?

1 ,得 ?2 ? x ? 0 , 2

故点 P 的轨迹方程为 x2 ? 2 y 2 ? 4 x ? 0 ( ?2 ? x ? 0 ). (Ⅱ)不妨设 x1 ? x2 ,

x2 ? x1 ? ( x1 ? x2 )2 ? 4 x1 x2 ? (?
设 M ( xM , yM ) ,

8k 2 2 8k 2 ? 2 . ) ? 4 ? 1 ? 2k 2 1 ? 2k 2

8k 2 2 8k 2 ? 2 x1 ? x2 (? ) ? 4 ? ? x1 2 | MA | xM ? x1 x ?x 1 ? 2k 2 1 ? 2 k 2 ? 2 ? 4k ? ? 2 ? 2 1 ? x1 ? x2 8k 2 | MD | xM ? 2 2 ? 2 x1 ? x2 ? 4 ? ?4 2 2 1 ? 2k
. 由0 ? k ?
2

1 | MA | 2 | MA | 2 ,得 0 ? ,即 的取值范围为 (0, ]. ? 2 | MD | 2 | MD | 2
x y 2 2

解法二: (Ⅰ)设 P( x, y ) , A( x1 , y1 ) , B( x2 , y2 ) ,则 M ( , ) ,

? x12 ? y12 ? 1 ? x12 ? x2 2 ? 2 ? y12 ? y2 2 ? 0 , , ? 2 2 ? x2 ? y 2 ? 1 2 ? ? 2

x1 ? x2 , k AB

y y1 ? y2 1 x1 ? x2 x , k DM ? 2 . ?? ?? ? x x1 ? x2 2 y1 ? y2 2y ?2 2 x , x2 ? 2 y 2 ? 4 x ? 0 . ? 2y x ? 2 2 y 2

由 D, A, M , B 四点共线,得 k AB ? kDM , ?

x ( )2 x y x2 y ? y 2 ? 1内, 2 ? ( )2 ? 1 , 0 ? x2 ? 2 y 2 ? 8 , 0 ? ?4 x ? 8 , 又 M ( , ) 在椭圆 2 2 2 2 2
?2 ? x ? 0 .
2 2 故点 P 的轨迹方程为 x ? 2 y ? 4 x ? 0 ( ?2 ? x ? 0 ).

(Ⅱ)同解法一. 22.解: (Ⅰ)不等式 f ( x) ? f ( x ? 3) ? 5 可化为 | x ? 1| ? | x ? 2 |? 5 .

- 10 -

看看看看 你能你 们

当 x ? ?2 时, ?( x ? 1) ? ( x ? 2) ? 5 , 解得 x ? ?3 ,所以 ?3 ? x ? ?2 ; 当 ?2 ? x ? 1 时, ?( x ? 1) ? ( x ? 2) ? 5 ,所以 ?2 ? x ? 1 ; 当 x ? 1 时, ( x ? 1) ? ( x ? 2) ? 5 ,解得 x ? 2 ,所以 1 ? x ? 2 . 综上,不等式的解集为 [?3, 2] . (Ⅱ) f (ab) ?| ab ? 1| , | a | f ( ) ?| a || 因为 | a |? 1 , | b |? 1 , 所以 | ab ?1|2 ? | a ? b |2 ? (ab)2 ? 2ab ? 1 ? (a2 ? 2ab ? b2 )

b a

b ? 1|?| a ? b | , a

? (ab)2 ? a2 ? b2 ? 1 ? (a2 ?1)(b2 ?1) ? 0 ,
| ab ? 1|?| a ? b | ,
故 f (ab) ?| a | f ( ) .

b a

- 11 -



更多相关文章:
福建省永春县第一中学2016-2017学年高二语文上学期期末....doc
福建省永春县第一中学2016-2017学年高二语文上学期期末考试试题(含解析) - 永春一中高二年期末考语文科试卷 考试时间:150 分钟 试卷总分:150 分一、论述类文本...
永春一中2017-2018学年高二学期期末考试文科数学试题....doc
永春一中2017-2018学年高二学期期末考试文科数学试题含答案 - 福建省永春县第一中学 2017-2018 学年高二学期期末考试 文科数学试题 时间:120 分钟 满分:150 ...
福建省永春县第一中学2017-2018学年高二学期期末考试....doc
福建省永春县第一中学2017-2018学年高二学期期末考试政治试题Word版含答案 - 永春一中高二年(文)期末考政治科试卷(2018.07) 命题:黄剑榆 一、选择题(每小题...
福建省永春县第一中学2017-2018学年高二学期期末考试....doc
福建省永春县第一中学2017-2018学年高二学期期末考试地理试题 Word版含解析 - 永春一中高二年(下)地理(文科)期末考试卷(2018.7) 试卷总分 100 分,考试时间 ...
...一中学2017-2018学年高二地理上学期期末考试试题(含....doc
福建省永春县第一中学2017-2018学年高二地理上学期期末考试试题(含解析),永春县第一中学黄丹丹,永春县第一中学1996届学生,福建省泉州市永春县天气,福建省永春县,...
福建省晋江市永春县第一中学2017届高三暑期检测数学(....doc
福建省晋江市永春县第一中学2017届高三暑期检测数学()试题 - 永春一中高三年暑假考试数学()科试卷(2016.08) 命题:林一丁 考试时间 120 分钟 试卷总分 150 ...
...一中学2017-2018学年高二地理下学期期末考试试题(含....doc
福建省永春县第一中学2017-2018学年高二地理下学期期末考试试题(含解析) 赶得上赶得上给灌水灌水 福建省永春县第一中学 2017-2018 学年高二地理下学期期末考试试题 ...
...福建省晋江市永春县第一中学2016-2017学年高二历史1....doc
精品K12 教育教学资料 福建省晋江市永春县第一中学 2016-2017 学年高二历史 10 月月考试题 一、单选题(每小题 2 分,共 48 分) 1.早在商朝时期中国人就将...
...一中学2017_2018学年高二地理下学期期末考试试题(含....doc
福建省永春县第一中学2017_2018学年高二地理下学期期末考试试题(含解析)_政史地_高中教育_教育专区。福建省永春县第一中学 2017-2018 学年高二地理下学期期末考试...
福建省晋江市2016-2017学年高一上学期期末考试数学试题....doc
福建省晋江市2016-2017学年高一上学期期末考试数学试题 Word版含答案 - 福建省晋江市 2016-2017 学年高一上学期期末考试 数学试题 考试内容为:必修 2。分第 I ...
...一中学2017-2018学年高二地理下学期期末考试试题_图....doc
福建省永春县第一中学2017-2018学年高二地理下学期期末考试试题 - 小中高 精选 教案 试卷 选集 福建省永春县第一中学 2017-2018 学年高二地理下学期期末考试试题...
福建省晋江市(养正中学、惠安一中、泉州实验中学四校)2....doc
福建省晋江市(养正中学、惠安一中、泉州实验中学四校)2017-2018学年高二学期期末联考数学()试题 - 安溪一中、养正中学、惠安一中、泉州实验中学 2017-2018 学...
福建省永春县第一中学2016_2017学年高二历史3月月考习....doc
福建省永春县第一中学2016_2017学年高二历史3月月考习题(含解析) 福建省永春县第一中学 2016-2017 学年高二历史 3 月月考试题(含解 析)时间:90 分钟 一、...
【2019】福建省晋江市(安溪一中、泉州实验中学四校)201....doc
【2019】福建省晋江市(安溪一中、泉州实验中学四校)2017-2018学年高二学期期末联考物理试题含答案_理化生_高中教育_教育专区。安溪一中、养正中学、惠安一中、泉州...
福建省永春县第一中学2017-2018学年高二学期期初考试....doc
福建省永春县第一中学2017-2018学年高二学期期初考试历史试题Word版含解析_高中教育_教育专区。福建省中学考试试题Word版含解析 永春一中高二年期初考试历史科试卷...
福建省永春县第一中学2016_2017学年高二物理3月月考习....doc
福建省永春县第一中学2016_2017学年高二物理3月月考习题(含解析) - 永春一中高二年()物理 3 月月考试卷 一、选择题 1. 如图甲所示,长直导线与闭合金属线...
福建省晋江市2017-2018学年八年级下学期期末考试数学试....pdf
福建省晋江市2017-2018学年八年级下学期期末考试数学试题(含答案) - 晋江2018年春季八年级学业期末检测 数学试题 (试卷满分:150 分 考试时间:120 分钟) 友情提示...
精选2017-2018学年高二地理上学期期末考试试题(含解析).doc
最新中小学教育资源 福建省永春县第一中学 2017-2018 学年高二地理上学期期末考试试题 (含解析) 考试时间 90 分钟,试卷总分 100 分 一、选择题(共有 30 小题...
福建省永春县2016_2017学年高二地理3月月考试题2017122....doc
福建省永春县2016_2017学年高二地理3月月考试题201712210129 - 。。。 内部文件,版权追溯 福建省永春县 2016-2017 学年高二地理 3 月月考试题 考试时间 90...
福建省晋江市季延中学2017-2018学年高二学期期末考试....doc
福建省晋江市季延中学2017-2018学年高二学期期末考试化学试题含答案_高二理化生_理化生_高中教育_教育专区。季延中学 2018 年春高二年(理科)期末考试化学科试卷...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图