9512.net
甜梦文库
当前位置:首页 >> 高三数学 >>

黑龙江省哈尔滨市第三中学2016届高三下学期三模数学(理)试题 Word版含答案


一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项 中,只有一项 是符合题目要求的.
1.已知集合 A ? {x | x2 ? 3x ? 2 ? 0} , B ? {x | A.{x | x ? 1} 2.已知复数 z ? A.第一象限 B.{x | x ? 2 或 x ? 0}

x ? 0} ,则集合 A ? B ? ( x ?1
C.{x | 1 ? x ? 2} ) D.第四象限



D.{x | 1 ? x ? 2}

5 ,则复数 z 所对应的点在( i?2
B.第二象限 C.第三象限

3.对于函数 y ? f ( x), x ? R ,命题“ f (0) ? 0 ”是“ y ? f ( x) 是奇函数”的( A.充分非必要条件 非必要条件 4.已知函数 f ( x ) ? sin( 2 x ? A. [0, B.必要非充分条件 C.充分必要条件



D.既非充分又

?

?
6

]

B. [0,

?
3

) , x ? [0, ] ,则函数 y ? f ( x) 的单调递减区间是( 6 2
C. [

?



]

? ? , ] 6 3

D. [

? ? , ] 3 2

5.已知 ?ABC 是边长为 4 的等边三角形,则 ?ABC 的斜二测直观图的面积为( A. 6 B. 2 6 C. 4 3 D. 2 3 )



6.执行如下图所示的程序框图,则输出的结果是( A.1 B. ? 3 C. 3 D.0

1

?x ? 0 ? 7.设 x, y 满足约束条件: ?2 x ? y ? 1 ,则 z ? 3x ? y 的最小值为( ?x ? y ? 2 ?
A.0 B.1 C.2 D.3



x2 y2 ? 9.已知双曲线 2 ? 2 ? 1(a ? 0, b ? 0) 的右焦点为 F ,若过点 F 且倾斜角为 45 的直线与 a b
双曲线的右支有且仅有一个交点,则此双曲线的离心率的取值范围是( A. (1, 2 ] B. (1, 2 ) C. [ 2 ,??) D. ( 2 ,??) )

10.已知一个几何体的三视图如图所示,则这个几何体外接球体积与该几何体的体积比为 ( A. )

3 3 ? 2

B.

3 ? 4

C.

3 3 ? 4

D.

3 ? 8

2

11.从抛物线 y 2 ? 4 x 的准线 l 上一点 P 引抛物线的两条切线 PA 、 PB , A , B 为切点,若 直线 AB 的倾斜角为

? ,则 P 点的纵坐标为( 3
C.



A.

3 3

B.

2 3 3

4 3 3

D. 2 3

12.已知函数 f ( x ) ? ?

?e 2 x ? 1 ( x ? 0) ,把函数 p( x) ? f ( x) ? x 的零点从小到大的顺序 ? f ( x ? 1) ? 1( x ? 0)
) D.无法确定

排成一列,依次为 x1 , x2 , x3 ,?,则 x3 ? x5 与 2 x4 大小关系为( A. x3 ? x5 ? 2 x4 B. x3 ? x5 ? 2 x4 C. x3 ? x5 ? 2 x4

第Ⅱ卷(共 90 分)
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
13.哈三中高三一模理科参加数学考试学生共有 1016 人,分数服从 X ~ N (105 ,20 ) ,则估 计分数高于 105 分的人数为
?

2

. .

14.已知向量 a , b 的夹角为 60 , | a |? 1 , | b |? 3 ,则 | 5a ? b |? 15.已知 A ? {( x, y) || x |? 2, | y |? 3} ,B ? {( x, y ) | y ? 则该点落在集合 B 所在区域内的概率为 .

3 2 x }, 现向集合 A 所在区域内投点, 4

16.在 ?ABC 中,角 A, B, C 的对边分别为 a, b, c ,若 b(tan A ? tan B) ? 2c tan B , BC 边 的中线长为 1,则 a 的最小值为 .

三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演

3

算步骤.)
17.已知各项均不为 0 的等差数列 {an } 前 n 项和为 Sn , 满足 S4 ? 2a5 , 数列 {bn } a1a2 ? a4 , 满足 bn?1 ? 2bn , b1 ? 2 . (1)求数列 {an } , {bn } 的通项公式; (2)设 cn ?

anbn ,求数列 {cn } 的前 n 项和 Tn . 2

18.某网络营销部门为了统计某市网友 2015 年 11 月 11 日在某网店的网购情况, 随机抽查了 该市 100 名网友的网购金额情况,得到如下频率分布直方图. (1)估计直方图中网购金额的中位数; (2)若规定网购金额超过 15 千元的顾客定义为“网购达人” ,网购金额不超过 15 千元的顾 客定义为“非网购达人” ;若以该网店的频率估计全市“非网购达人”和“网购达人”的概 率,从全市任意选取 3 人,则 3 人中“非网购达人”与“网购达人”的人数之差的绝对值为

X ,求 X 的分布列与数学期望.

19.已知四边形 ABCD 为矩形,BC ? BE ? 2 ,AB ? 5 , 且 BC ? 平面 ABE , 点 F 为 CE 上的点,且 BF ? 平面 ACE ,点 M 为 AB 中点. (1)求证: MF // 平面 DAE ; (2)求 BF 与平面 DCE 所成线面角的正弦值.

4

x2 3 ? y 2 ? 1 ,斜率为 20.已知椭圆 C : 的动直线 l 与椭圆 C 交于不同的两点 A 、 B . 4 2
(1)设 M 为弦 AB 的中点,求动点 M 的轨迹方程; (2) 设 F1 、F2 为椭圆 C 的左、 右焦点,P 是椭圆在第一象限上一点, 满足 PF1 ? PF2 ? ? 求 ?PAB 面积的最大值. 21.已知函数 f ( x) ? sin x , g ( x ) ? ax ?

5 , 4

1 3 x , h( x) ? ln(x ? 1) , x ? (0,1) . 6

(1)当 a ? 2 时,判断 y ? g ( x) ? h( x) 的单调性; (2)若 f ( x) ? g ( x) ? h( x) 恒成立,求实数 a 的取值集合.

请考生在 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题记分.
22.(本小题满分 10 分)选修 4-1:几何证明选讲 如图所示, MA 为以 AB 为直径的圆 O 的切线, A 为切点, C 为圆周上一点, BC // OM , 直线 MC 交 AB 的延长线于点 E . (1)求证:直线 MC 是圆 O 的切线; (2)若 AB ? 2 , MA ? 3 ,求线段 BC 的长.

5

23. (本小题满分 10 分)选修 4-4:坐标系与参数方程 已知曲线 C1 的参数方程为 ?

?x ? 2 ? t ( t 为参数) , 以原点 O 为极点,x 轴的正半轴为极轴, ? y ? 1 ? 2t
4 cos ? . sin 2 ?

建立极坐标系,曲线 C2 的极坐标方程为 ? ?

(1)分别写出 C1 的普通方程, C2 的直角坐标方程; (2)已知点 P(2,1) ,曲线 C1 与曲线 C2 的交点为 M , N ,求 | PM | ? | PN | . 24. (本小题满分 10 分)选修 4-5:不等式选讲 已知函数 f ( x) ?| 2 x ? 1 | ? | x ? 2 | . (1)求函数 f ( x) 的最小值 a ; (2)当 m ? n 时,求证: 2m ?

5 ? 33 a ? 2n . 2(m ? n) 2

2016 年哈尔滨市第三中学第三次高考模拟考试理科数学答案
1-12 BCBDA 13 508 14 CBBCA BA 15

19

1 3

16

2 2 ?2

6

17. 解: (I) 4a1 ? 6d ? 2 ? a1 ? 4d ? , a1 ? a1 ? d ? ? a1 ? 3d 则 an ? 2n ;-----------------------------------------------3 分

bn ? 2n ;-------------------------------------------------------------------6 分
(II) cn ?

anbn ? n 2n , 2

则 Tn ? 1? 21 ? 2 ? 22 ? 3 ? 23 ? ... ? n2n

2Tn ? 1? 22 ? 2 ? 23 ? 3 ? 24 ? ... ? n2n?1

18. (I)中位数是 13;

???????????????????????4 分

(II)依题意,从全市任取的三人中“网购达人”的人数服从 B(3,0.3) ,所以 X 可能取值为
3 0 1,3 ,且 P( X ? 3) ? C3 0.33 ? C3 0.73 ? 0.37 , ???????6 分 1 2 P( X ? 1) ? C3 0.31 ? 0.7 2 ? C3 0.32 ? 0.71 ? 0.63 ???8 分

所以 X 的分布列为

X
P

1

3
0.37
[

0.63

???????????10 分 数学期望 EX ? 1 ? 0.63 ? 3 ? 0.37 ? 1.74 19. 解: (I)取 DE 中的 Q ,连接 QF 、 QA 因为 BF ? 平面 CAE ,所以 F 为中点,

???????????12 分

NF / / AM , NF ? AM ,
四边形 AMFN 为平行四边形,

AQ / / 平面 QAE .

???4 分

(II)因为 BF ? 平面 CAE ,所以 F 为中点, BF ? AE , 因为 BC ? 平面 BAE ,所以 AE ? 平面 BCE 所以 AE ? BE ???7 分 以 B 为坐标原点, BE 为 x 轴, BC 为 z 轴,建立空间直角坐标系

7

z D C

Q

F

A E x

M

B y

BF ? ?1,0,1?

???9 分

平面 DCE 的法向量为 n ? ?1, 2,1?

cos n, BF ?

3 3 3 3
x2 2 ? y2 ? 1 4
2

所以线面角正弦值为

???12 分

20. 解: (Ⅰ)设 M ?x, y ?, A?x1 , y1 ?, B?x2 , y 2 ? , (1)-(2)得:

(1)

x1 2 ? y1 ? 1 (2) 4

2

3 y 1 ? ? ,即 x ? 2 3 y ? 0 2 x 4

………….3 分

又由中点在椭圆内部得 ? 3 ? x ? 3 , 所以 M 点的轨迹方程为 x ? 2 3 y ? 0 , ? 3 ? x ? 3 (Ⅱ)由 PF1 ? PF2 ? ? 设直线 l 的方程为 y ? ………….5 分 ………….6 分

? 3? 5 ?, ,得 P 点坐标为 ?1, ? ? 2 4 ? ?
3 x ? m ,代入椭圆方程中整理得: 2

x 2 ? 3mx ? m 2 ? 1 ? 0 ,由 ? ? 0 得 ? 2 ? m ? 2
则 x1 ? x2 ? ? 3m, x1 x2 ? m 2 ? 1 ………….7 分

8

AB ?

m 7 4 ? m2 , d ? 4 7 4

………….9 分

所以 S ?PAB ?

S ?PAB

1 ………….10 分 m 4 ? m2 2 1 m2 ? 4 ? m2 1 ? 1 ,当 m ? ? 2 时, S max ? 1 ? m 4 ? m2 ? 2 2 2
………….12 分

21. 解: (1)当 a ? 2 时,设 m( x ) ? g( x ) ? h( x )

1 1 m?( x ) ? 2 ? x 2 ? 2 x ?1

………………………………………………2 分

? 1?

x( 1 ? x )( x ? 2 ) ?0 2( x ? 1 )

故 m( x ) 在 ( 0 ,1 ) 上单调递增 ……………………………………………….4 分 (2)设 p( x ) ? f ( x ) ? g( x ) ? sin x ?

1 3 x ? ax 6

p?( x ) ? cos x ?

1 2 x ? a ,因为 p??( x ) ? x ? sin x ? 0 , 2

所以 p?( x ) 递增.所以有: 当 a ? 1 时,p?( x ) ? 0 , 所以 p( x ) 单调递增, 所以 p( x ) ? p( 0 ) ? 0 , 成立; ……………………….6 分

1 ? cos 1 时, p?( x ) ? 0 ,所以 p( x ) 单调递减,欲证不等式不成立; 2 1 1 2 当 1 ? a ? ? cos 1 时,设 cos x ? x ? a ? 0 零点为 x0 ,则当 x ? ( 0,x0 ) 时 p( x ) 递减 2 2
当a ?

x ?( x0 ,1 ) p( x ) 递增,从而当 x ? ( 0,x0 ) , p( x ) ? 0 ,与前提矛盾………………………….8 分
综上,此时 a ? 1 . 再设 q( x ) ? g( x ) ? h( x ) ? ax ?

1 3 x ? ln( x ? 1 ) 6

1 2 1 x3 ? x 2 ? 2 ? q(x)?a? x ? ?a? 2 x ?1 2( x ? 1 )
设 m( x ) ?

x3 ? x 2 ? 2 x3 ? 2 x 2 ? x ? 2 ,易求 m?( x ) ? , 2( x ? 1 ) ( x ? 1 )2
3 2 2

再令 n( x ) ? x ? 2x ? x ? 2 ,易知 n?( x ) ? 3x ? 4x ? 1 ? 0

9

且 n( 0 ) ? 0,n( 1 ) ? 0 ,从而由零点存在定理知。必存在唯一零点 s ? ( 0,1 ) ,使 n( s ) ? 0 当 x ? ( 0,s ) m?( x ) ? 0 ,m( x ) 递减 x ? ( s,1 ) m?( x ) ? 0 ,m( x ) 递增, 且 m( 1 ) ? m( 0 ) ? 1 设 m( x )min ? m 当 a ? 1 时, q?( x ) ? 0 恒成立, q( x ) 递增,所以 q( x ) ? q( 0 ) ? 0 ,原不等式成立; ……………………………………………….10 分 当 a ? m 时, q?( x ) ? 0 恒成立, q( x ) 递减,所以 q( x ) ? 0 恒成立,矛盾; 当 m ? a ? 1,设 a ?

x3 ? x 2 ? 2 ? 0 两根为 x1、x2 ,则 ( 0,x1 ) q( x ) 递减,( x1 ,x2 ) q( x ) 递 2( x ? 1 )

增, ( x2 ,1 ) q( x ) 递减,故此时 q( x ) ? 0 仍不能恒成立. 综上所述, a ? 1 . 所以 f ( x ) ? g( x ) ? h( x ) 恒成立的 a 的取值集合为 {1} .……………12 分 22.解: (1)连接 OC , BC // OM ? ?BCO ? ?COM , ?AOM ? ?CBO , 又 OC ? OB ? ?CBO ? ?BCO ,所以 ?COM ? ?AOM ,又 OC ? OA, OM ? OM , 所 以 ?O C M ? ?O A M , 所 以 ?O C M ? ?O A M , 因 为 MA 为 圆 O 的 切 线 , 所 以

?OCM ? ?OAM ?

?

2

,直线 MC 是圆 O 的切线;

5分

(2) Rt ?MAO 中, MO ? 所以 BC ? AB ? BC ? OA OM

AM 2 ? AO2 ? 10 ,连接 AC ,则 ?ABC ∽ ?MOA ,
10 5

10 分

23.解: (1) C1 的普通方程为 2 x ? y ? 5 ? 0 , C2 的普通方程为 y ? 4 x
2

5



10

? x ? 2? ? ? (2)将直线 C1 的标准参数方程 ? ? y ? 1? ? ?
所以 PM ? PN ? m1m2 ?

1 m 5 代入 y 2 ? 4x 得, 4 m 2 ? 8 5 m ? 7 ? 0 , 2 5 5 m 5

35 4

1 ? ? 3 x ? 1, x ? 2 ? 1 1? ? ? 24.解: (1) f ( x) ? 2 x ? 1 ? x ? 2 ? ?? x ? 3,?2 ? x ? ,所以 y ? f ( x) 在 ? - ?, ? 单调 2 2? ? ? ? ? 3 x ? 1, x ? ?2 ? ?
递减,在 ? , ? ? ? 上单调递增,所以 f ( x) min ? f ? ? ?

?1 ?2

? ?

?1? ?2?

5 5 ,所以 a ? . 2 2

5分

( 2 ) 只 需 证 2(m ? n) ? 10 分

a a ? 33 a , 即 证 (m ? n) ? (m ? n) ? ? 33 a 2 2 ?m ? n? ?m ? n?

11


赞助商链接

相关文档:


更多相关文章:
黑龙江省哈尔滨市第三中学2016届高三下学期三模文科综...
黑龙江省哈尔滨市第三中学2016届高三下学期三模文科综合试题_高中教育_教育专区。 哈尔滨三中 2016 年第三次模拟考试 文科综合能力试卷答案三模地理答案 1-5 DBACC...
2018届黑龙江省哈尔滨市第三中学高三三模理科综合试题答案
2018届黑龙江省哈尔滨市第三中学高三三模理科综合试题答案 - 哈三中 2018 年高三第三次模拟考试生物答案 1.选择题(每题 6 分) CADCAB 29.(10 分,除标注外,...
哈三中2018三模数学(理)试题(含答案)
哈三中2018三模数学(理)试题(含答案) - 2018 年哈尔滨市第三中学第三次高考模拟考试 数学试卷(理工类) 考试说明:本试卷分第 I 卷(选择题)和第 II 卷(非...
黑龙江省哈尔滨市第三中学2016届高三下学期三模语文试...
黑龙江省哈尔滨市第三中学2016届高三下学期三模语文试题_高中教育_教育专区。 2016 年哈尔滨市第三中学第三次高考模拟考试语文答案 1. C2. C3. D4. B5.D 6....
2018届黑龙江省哈尔滨市第三中学高三三模英语答案
2018届黑龙江省哈尔滨市第三中学高三三模英语答案 - 2018 年哈尔滨市第三中学第三次高考模拟考试 英语答案 第一部分: 听力(共两节,满分 30 分) 1-5 ABACA 6...
2018年哈三中三模数学试题(答案)
2018年哈三中三模数学试题(答案)_数学_高中教育_教育专区。2018年哈尔滨第三中学高中三模数学试题 理科数学试卷第 1 页(共 12 页) 理科数学试卷第 2 页(共...
黑龙江省哈尔滨市第三中学2017届高三二模考试数学(理)...
黑龙江省哈尔滨市第三中学2017届高三二模考试数学(理)试题_高三数学_数学_高中...数学答案(理工类) 1---6:BDAA B C 13.240 14.(2,4] 时,由 7---12...
黑龙江省哈尔滨市第三中学2016届高三下学期二模考试文...
黑龙江省哈尔滨市第三中学2016届高三下学期二模考试文综历史试题 Word版含答案.doc - 24. 秦代承相辅佐皇帝处理全国政务.汉朝设置中朝、尚书,魏晋南北朝的门下省与...
...黑龙江省哈尔滨市第三中学2016届高三下学期二模考试...
【全国百强校】黑龙江省哈尔滨市第三中学2016届高三下学期二模考试语文试题(word版,含答案)_高三语文_语文_高中教育_教育专区。2016 年哈尔滨市第三中学第二次高考...
黑龙江省哈尔滨市第三中学2018届高三二模考试数学(理)...
黑龙江省哈尔滨市第三中学2018届高三二模考试数学(理)试卷及答案_数学_高中教育_教育专区。黑龙江省哈尔滨市第三中学2018届高三二模考试数学(理)试卷及答案 ...
更多相关标签:

All rights reserved Powered by 甜梦文库 9512.net

copyright ©right 2010-2021。
甜梦文库内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图